
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35637 | Page 1

The Future of DevOps Compute: A Survey of Innovative Strategies for Efficient

Resource Utilization

Anushka Jindal

Information Science and Engineering

RV College of Engineering

Bengaluru, Karnataka

anushkajindal.is20@rvce.edu.in

Dr. G S Mamatha

Information Science and Engineering

RV College of Engineering

Bengaluru, Karnataka

mamathags@rvce.edu.in

Abstract—This paper investigates innovative strategies

employed by DevOps teams to optimize compute resource

utilization within their environments. High compute resource

utilization is critical for efficient application development and

deployment in DevOps workflows. Traditional virtual

machines (VMs) often lead to resource waste due to

overprovisioning and static allocation. This research analyzes

the growing adoption of containers for achieving higher

density and finer-grained resource control. Additionally, the

impact of autoscaling and serverless functions on dynamically

adjusting compute resources based on real-time demand is

examined. Through a comprehensive survey, the paper

identifies key trends, challenges, and best practices associated

with optimizing compute utilization in DevOps. The findings

aim to guide DevOps teams towards efficient and cost-effective

compute resource management strategies within the ever-

evolving landscape of application development.

Keywords—DevOps, Compute Resource Utilization,

Containers, Virtual Machines, Autoscaling, Serverless Functions,

Resource Management, Application Development, Cost

Optimization, Dynamic Resource Allocation

I. INTRODUCTION

The modern software development landscape demands
ever-increasing agility and efficiency. DevOps practices have
become a cornerstone of achieving these goals by
streamlining application development and deployment
lifecycles. At the heart of successful DevOps lies the optimal
utilization of compute resources. This translates to not only
maximizing application performance but also achieving
significant cost savings and maintaining the necessary
flexibility to adapt to fluctuating demands.

However, traditional virtual machine (VM) based
deployments often struggle to meet these optimization goals.
Two key limitations inherent to VMs hinder efficiency:
overprovisioning and static allocation. In an effort to handle
unpredictable workload spikes, VMs are frequently
provisioned with more resources than necessary. This leads
to a significant portion of the resources being idle during
regular operation, resulting in wasted investment.
Additionally, VMs typically receive a fixed allocation of
CPU, memory, and storage. This static allocation can lead to
underutilized resources for some VMs while others become
overloaded, hindering overall performance.

These limitations of VMs can have a cascading effect.
They can significantly impact application performance by
introducing bottlenecks, inflate infrastructure costs due to
wasted resources, and hinder the very agility that DevOps

strives to achieve by creating inflexible deployment
environments. This paper delves into innovative strategies
adopted by forward-thinking DevOps teams to overcome
these challenges and unlock the full potential of compute
resource utilization within their environments. It explores
how these strategies can lead to a more performant, cost-
effective, and agile DevOps workflow.

II. LITERATURE REVIEW

A recent surge in research explores innovative methods
to optimize compute resource utilization within DevOps
environments. This focus on efficiency is crucial for ensuring
high-performing, cost-effective, and agile application
development lifecycles.

One promising approach involves dynamic resource
provisioning techniques. Fang et al. propose a method that
leverages reinforcement learning to automatically adjust
resource allocation based on real-time demands. Their study
demonstrated that this approach could achieve high resource
utilization and significant cost savings, thus making it a
viable solution for dynamic environments where resource
demands fluctuate [1].

In the domain of containerization, a key technology for
efficient resource management, Liu et al. investigate
container scheduling algorithms. Their research focuses on
optimizing container placement within a host system to
achieve better resource packing and improve overall
application performance. This study highlights the potential
for container orchestration frameworks to enhance resource
efficiency and application scalability [2].

Cloud environments offer inherent scalability, but efficient
resource allocation remains a challenge. Bhattacharya et al.
explore resource autoscaling strategies that leverage machine
learning for workload prediction. By employing predictive
analytics, their approach enables proactive resource
allocation based on anticipated demands, leading to
improved efficiency and reduced costs in cloud-based
DevOps setups [3].

Serverless functions are gaining traction in DevOps due to
their ability to eliminate server management overhead. Li et
al. present a framework for optimizing serverless functions
by considering factors such as cost and execution time. This
framework assists developers in making informed decisions
when deploying serverless functions within their DevOps
workflows, thus optimizing both performance and resource
usage [4].

http://www.ijsrem.com/
mailto:anushkajindal.is20@rvce.edu.in
mailto:mamathags@rvce.edu.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35637 | Page 2

While virtual machines (VMs) remain a prevalent solution,
research is exploring alternative approaches. Zhang et al.
investigate hybrid cloud strategies that combine VMs with
containers. This hybrid approach aims to leverage the
benefits of both technologies, providing optimized resource
utilization and improved fault tolerance within DevOps
environments. Their findings suggest that such hybrid
solutions can enhance both flexibility and efficiency in
resource management [5].

Infrastructure as Code (IaC) is emerging as a powerful tool
for automating infrastructure provisioning and management.
Wang et al. examine how IaC tools can be leveraged to
automate resource provisioning within DevOps workflows.
Their study indicates that automation through IaC can lead to
improved efficiency and reduced human error, which are
critical for maintaining agile and reliable development
environments [6].

Continuous monitoring plays a vital role in identifying
resource bottlenecks and optimizing allocation. Chen et al.
investigate the integration of DevOps practices with
continuous monitoring tools. They explore how real-time
data from monitoring tools can be used to proactively
identify resource bottlenecks and optimize resource
allocation decisions, thereby enhancing the overall efficiency
and reliability of DevOps processes [7].

Security considerations are paramount in any DevOps
environment. Aissi et al. explore secure resource
management techniques that can be integrated within
DevOps workflows. Their research is crucial for ensuring the
confidentiality, integrity, and availability of resources within
DevOps environments, thus addressing critical security
concerns in resource optimization [8].

Looking towards the future, Gupta and Jain discuss the
potential of leveraging artificial intelligence (AI) for
intelligent resource management and workload optimization
in DevOps environments. They highlight how AI techniques,
such as machine learning, can lead to even more efficient and
automated resource management strategies, paving the way
for next-generation DevOps practices [9].

By exploring these recent advancements and ongoing
research efforts, we can gain valuable insights into how
DevOps teams are optimizing compute resource utilization to
achieve high-performing, cost-effective, and agile
application development lifecycles.

III. CHALLENGES WITH CURRENT RESOURCE

UTILIZATION TECHNIQUES IN DEVOPS

Optimizing compute resource utilization within DevOps

environments is crucial for achieving high-performing, cost-

effective, and agile application development lifecycles.

However, several limitations inherent to traditional resource

utilization techniques pose significant challenges for

DevOps teams.

A. Overprovisioning and Static Allocation

A common challenge stems from the practice of

overprovisioning virtual machines (VMs). To handle

unpredictable workload spikes, VMs are frequently

allocated more resources (CPU, memory, storage) than they

typically require during regular operation. This leads to a

significant portion of resources remaining idle, resulting in

wasted investment in compute power and storage. Even with

overprovisioning, performance bottlenecks can occur if

workloads unexpectedly surge beyond the VM's capacity.

Furthermore, traditional VM allocation methods often rely

on static allocation. This approach assigns fixed amounts of

CPU, memory, and storage to individual VMs, regardless of

fluctuating demands throughout the application lifecycle.

While static allocation can simplify initial deployment, it

creates inflexibility in resource utilization. Some VMs may

become overloaded during peak periods, experiencing

performance degradation, while others remain underutilized

for extended periods, wasting resources.

Fig. 1 is a pie chart that represents the distribution of

resources within a typical overprovisioned VM. The chart is

divided into segments depicting the percentage of CPU,

memory, and storage that are actually utilized during

average operation compared to the total allocated amount.

This visually highlights the significant portion of idle

resources.

Fig. 1. Resource distribution in overpositioned VM

B. Monitoring Complexity and Lack of Visibility

Efficient resource utilization necessitates a

comprehensive understanding of resource consumption

across the entire DevOps pipeline. However, monitoring

resource utilization across diverse environments with

various resource types (VMs, containers, serverless

functions) can be complex and time-consuming. Traditional

monitoring tools might not be designed to provide granular

insights into resource usage at the container or microservice

level, hindering the ability to identify bottlenecks and

wasted resources within complex DevOps deployments.

C. Manual Scaling and Inefficiency

Scaling compute resources manually to accommodate

changing demands is a slow and error-prone process.

DevOps teams need to actively monitor resource utilization

metrics and manually adjust resource allocation (e.g.,

provisioning additional VMs) when demand increases. This

reactive approach can lead to delayed scaling responses,

resulting in performance degradation during peak workloads.

Additionally, manually scaling resources often involves

provisioning new instances with some lead time, leading to

over-provisioning during periods of moderate demand.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35637 | Page 3

TABLE I. MANUAL SCALING TIMELINE GRAPH

This timeline graph illustrates the reactive nature of manual

scaling. The graph represents a typical workload pattern

with spikes in demand. The timeline shows a delay between

the workload increase and the manual provisioning of

additional resources, highlighting the potential for

performance degradation during peak periods.

D. Cost Management Challenges in Cloud Environments

Cloud computing offers on-demand scalability and

flexibility for resource provisioning. However, traditional

VM pricing models often don't incentivize efficient resource

usage. With pay-as-you-go models, organizations pay for

the total amount of resources provisioned, regardless of

actual utilization. This can lead to increased infrastructure

costs if overprovisioning practices are not addressed.

Additionally, complex pricing structures and reserved

instance options can present challenges in optimizing cloud

resource costs for DevOps teams.

E. Security Considerations

While adopting new technologies like containers and

serverless functions can improve resource utilization, they

introduce new security considerations for DevOps teams.

Implementing secure resource allocation practices within

containerized environments is crucial to ensure isolation and

prevent unauthorized access to sensitive data. Additionally,

managing security configurations within serverless

functions necessitates careful attention to potential

vulnerabilities in the function code and access control

mechanisms.

By understanding these challenges, DevOps teams can make

informed decisions about resource utilization strategies

within their environments. The emergence of innovative

technologies like containerization, autoscaling, and

Infrastructure as Code (IaC) offer promising solutions to

address these limitations and achieve more efficient

compute resource utilization within DevOps workflows.

IV. EMERGING TECHNOLOGIES FOR EFFICIENT RESOURCE

UTILIZATION IN DEVOPS

Traditional resource utilization techniques in DevOps
environments often face limitations, hindering performance,

agility, and cost-effectiveness. However, the landscape is
evolving, and several innovative technologies are emerging
to address these challenges and enable efficient resource
utilization within DevOps workflows.

A. Containerization

Containerization has become a cornerstone technology
for efficient resource utilization in DevOps. Containers are
lightweight execution environments that package an
application and its dependencies together, isolating them
from the underlying host operating system. This approach
offers several key advantages.

• Increased Density and Resource Efficiency:
Containers share the host operating system kernel,
eliminating the need for individual OS instances
within VMs. This allows for a much higher density of
applications on a single host, maximizing resource
utilization and reducing idle resources.

• Portability and Consistency: Containers are
designed to be portable across different computing
environments, ensuring consistent application
behavior throughout the development lifecycle. This
simplifies deployment and streamlines resource
management across diverse DevOps pipelines.

• Faster Startup Times: Containers leverage the host
operating system kernel, enabling much faster startup
times compared to traditional VMs. This agility
enhances developer productivity and facilitates rapid
deployments within DevOps workflows.

Fig. 2. Containerization - Bar Graph Data

Fig. 2 is a bar graph that compares the resource
utilization of a traditional VM with a containerized
application running on the same host. The VM shows
lower utilization, indicating idle resources, while the
containerized application utilizes a higher percentage of
allocated resources.

B. Autoscaling

Autoscaling dynamically adjusts compute resources
(VMs or containers) based on real-time demand. This
proactive approach helps optimize resource utilization by:

Time (in hours) Resource Utilization

(in %)

0 30

1 35

2 40

3 60

4 70

5 65

6 50 (resources provisioned)

7 45

8 40

9 35

10 30

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35637 | Page 4

• Scaling Up During Peak Periods: When application
workloads increase, autoscaling automatically
provisions additional resources to meet the demand.
This eliminates performance bottlenecks and ensures
smooth application operation.

• Scaling Down During Low Demand: During
periods of low traffic, autoscaling can automatically
scale down resources, freeing up unused resources
and reducing cloud infrastructure costs. This dynamic
approach optimizes resource allocation based on
fluctuating demand patterns.

C. Serverless Functions

Serverless functions offer an event-driven programming
model that eliminates server management overhead for
developers. Developers focus solely on writing the code, and
the cloud provider manages the underlying infrastructure and
resource allocation. Serverless functions offer several
benefits for resource utilization:

• Pay-Per-Use Model: Serverless functions are billed
based on the actual execution time and resources
consumed by the code. This eliminates idle resource
costs and incentivizes efficient coding practices
within DevOps teams.

• Automatic Scaling: Serverless platforms
automatically scale the resources allocated to
serverless functions based on incoming requests. This
ensures cost-effectiveness during low traffic periods
and prevents performance degradation during peak
loads.

TABLE II SERVERLESS FUNCTIONS- COST COMPARISON
DATA

This table compares the cost structure of a traditional VM-
based deployment with a serverless function implementation.
The upfront cost of provisioning VMs is contrasted with the
low cost of serverless functions, highlighting the potential
cost savings for idle periods.

D. Infrastructure as Code (IaC)

Infrastructure as Code (IaC) tools enable DevOps teams

to define and manage infrastructure through code. This

approach offers significant benefits for resource utilization:

• Standardized and Repeatable Configurations: IaC
templates define the configuration of infrastructure
resources, ensuring consistency and repeatability
across deployments. This eliminates manual errors
and ensures efficient resource allocation based on
pre-defined configurations.

• Version Control and Automation: IaC
configurations can be version controlled alongside
application code, facilitating rollback capabilities and
automated infrastructure provisioning within DevOps
pipelines. This promotes efficient resource
management and reduces manual configuration tasks.

• Infrastructure as a Service (IaaS) Integration:
Many IaC tools integrate seamlessly with cloud IaaS
providers, allowing for automated provisioning and
management of resources within the cloud
environment. This simplifies resource management
within the DevOps workflow.

E. Monitoring and Analytics Tools

Advanced monitoring and analytics tools play a critical

role in optimizing resource utilization within DevOps

environments. These tools provide valuable insights into

resource consumption across the entire pipeline, enabling:

• Real-time Resource Visibility: Modern monitoring
tools offer real-time insights into resource utilization
metrics (CPU, memory, storage, network) for VMs,
containers, and serverless functions. This allows
DevOps teams to identify bottlenecks and wasted
resources promptly.

• Resource Optimization Recommendations:
Advanced analytics tools can leverage machine
learning to analyze usage patterns and predict future
demands. This information can be used to
recommend optimal resource allocation strategies and
proactive scaling decisions.

• Alerting and Automation: Monitoring tools can be
configured to generate alerts when resource
utilization thresholds are breached. This allows for
early detection of potential issues and facilitates
automated scaling actions to maintain optimal
resource utilization.

F. Artificial Intelligence (AI) and Machine Learning (ML)

Integrating AI and ML techniques into DevOps

workflows holds tremendous potential for further enhancing

resource utilization. These technologies can provide:

• Predictive Scaling: Machine learning algorithms can
analyze historical resource usage patterns and predict
future demands. This allows DevOps teams to
proactively scale resources ahead of anticipated
workload spikes, ensuring smooth application
performance and efficient resource allocation.

• Automated Resource Management: AI can be used
to automate resource management decisions based on
real-time data and historical trends. This removes
human error from the process and optimizes resource
allocation throughout the development lifecycle.

By embracing these emerging technologies and
implementing best practices for resource utilization, DevOps
teams can unlock significant benefits. They can achieve
higher application performance, increased agility in
responding to changing demands, and reduced infrastructure
costs within their scope.

V. FUTURE TRENDS

The landscape of resource utilization within DevOps
environments is constantly evolving. As technology

Factor Traditional VM-
based

Deployment

Serverless
Functions

Upfront Cost High
(Provisioning
VMs)

Low (No server
management)

Ongoing Cost Constant (Pay for
allocated VMs)

Variable (Pay-per-
use for execution)

Idle Resource
Cost

High (Unused
VMs incur cost)

Zero (No cost for
idle functions)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35637 | Page 5

advancements continue, several promising trends are
emerging that hold the potential to further optimize resource
management and enhance DevOps workflows.

A. Rise of FinOps Culture

FinOps, a financial management practice for cloud
computing, is increasingly being adopted by DevOps teams
to emphasize cost optimization alongside operational
efficiency. This collaborative approach is set to evolve with
trends pointing towards the deeper integration of FinOps
principles into resource utilization strategies. Key
developments include cost-aware resource allocation, where
teams will use tools and metrics that provide real-time
insights into the cost implications of various resource
allocation strategies. This will enable informed decision-
making that balances optimal performance with minimized
cloud infrastructure expenses. Additionally, resource
rightsizing and the use of reserved instances for predictable
workloads will become more prominent, focusing on
matching resources to actual demand and optimizing costs,
thereby enhancing efficiency within DevOps workflows.

B. Green DevOps and Sustainable Practices

Sustainability is becoming increasingly important in the
IT industry, with future trends in resource utilization within
DevOps likely to focus on minimizing environmental impact.
This includes developing energy-efficient resource
management strategies that optimize resource allocation to
reduce energy consumption, leveraging both hardware and
software solutions designed for energy efficiency, and
optimizing usage during off-peak hours. Additionally, the
integration of renewable energy is gaining traction, with
cloud providers and data centers incorporating renewable
sources into their infrastructure. DevOps teams will need to
factor in the availability of renewable energy when selecting
cloud services and crafting resource utilization strategies to
ensure environmentally responsible practices.

C. Decentralized Cloud and Edge Computing

The rise of decentralized cloud and edge computing
architectures introduces new opportunities and challenges for
resource utilization. Future research will likely focus on
developing efficient resource management strategies tailored
to these distributed environments. This may include resource
optimization at the edge, where DevOps teams will create
techniques for efficient resource allocation on constrained
edge devices, potentially utilizing containerization and
lightweight application deployments. Additionally, the
adoption of hybrid cloud environments will necessitate
seamless resource management across on-premises and cloud
platforms. Future trends might involve the development of
unified resource management tools that offer consistent
visibility and control across diverse environments, ensuring
efficient and cohesive resource utilization.

By staying abreast of these emerging trends and actively
adopting innovative technologies, DevOps teams can achieve
a future where resource utilization is optimized for
performance, cost-effectiveness, environmental sustainability,
and seamless integration within evolving cloud and edge
computing architectures.

VI. CONCLUSION

Traditional resource utilization techniques in DevOps
often hinder performance, agility, and cost-effectiveness.

This paper explored these challenges and presented emerging
technologies like containerization, autoscaling, and
serverless functions as promising solutions. By adopting
these technologies and practices like Infrastructure as Code
and advanced monitoring tools, DevOps teams can achieve
significant benefits. These include improved application
performance, increased cost savings, enhanced scalability,
and a reduced environmental footprint.

However, challenges like security concerns and skill gaps
persist. The future holds promise with advancements in
AI/ML for predictive allocation and self-healing
infrastructure. Additionally, FinOps principles will ensure
cost-effective resource utilization, while green DevOps
practices promote sustainability. The rise of decentralized
cloud and edge computing necessitates innovative resource
management strategies. By embracing these trends, DevOps
teams can create a future of optimized resource utilization
that fosters performance, cost-effectiveness, environmental
responsibility, and seamless integration within evolving
cloud and edge environments. This will ultimately lead to a
more efficient and sustainable DevOps lifecycle.

REFERENCES

[1] J. Fang, Y. Wang, X. Li, and Y. Sun, "Dynamic Resource
Provisioning with Deep Reinforcement Learning for DevOps
Environments," IEEE Transactions on Parallel and Distributed
Systems, vol. 34, no. 2, pp. 521-534, 2023.

[2] Z. Liu, X. Chen, and Z. Gong, "A Reinforcement Learning Approach
for Container Scheduling with Balanced Resource Packing and
Performance Improvement," IEEE Transactions on Cloud Computing,
doi: 10.1109/TCC.2022.3182282, 2022 (Early Access).

[3] S. Bhattacharya, A. Goswami, and S. K. Ghosh, "Machine Learning
Driven Resource Auto-scaling for Cloud-Based DevOps
Environments," Proceedings of the 2021 International Conference on
Computer Communication and Informatics (ICCCI), pp. 1-6, 2021.

[4] J. Li, H. Wen, S. Tang, X. Zhou, and Z. Li, "Serverless Function
Optimization: A Cost-Aware Approach Considering Execution
Time," Proceedings of the 2021 IEEE International Conference on
Cloud Engineering (ICCE), pp. 166-175, 2021.

[5] Y. Zhang, S. Wang, and J. Sun, "A Hybrid Cloud Resource
Management Approach for Fault Tolerance and Resource Utilization
Optimization in DevOps," Proceedings of the 2020 IEEE
International Conference on Cloud Computing (CLOUD), pp. 105-
112, 2020.

[6] C. Wang, Z. Gong, and X. Sun, "Enhancing Resource Efficiency in
DevOps Environments with Infrastructure as Code," Proceedings of
the 2022 International Conference on High Performance Computing
and Communications (HPCC), pp. 1-8, 2022.

[7] H. Chen, Y. Mao, R. Buyya, and S. Jin, "Integration of DevOps
Practices with Continuous Monitoring for Resource Optimization in
Cloud Environments," IEEE Transactions on Services Computing, vol.
14, no. 4, pp. 1322-1335, 2021.

[8] M. Aissi, A. Hamdi-Toub, C. Hamdi, M. E. Houcine, and A. Mtibaa,
"Secure Resource Management in DevOps Environments: A Survey,"
IEEE Access, vol. 9, pp. 12180-12197, 2021.

[9] M. Gupta and S. Jain, "AI-driven Resource Management and
Workload Optimization in DevOps Environments," Proceedings of
the 2024 International Conference on Innovative Computing and
Communications (ICICC), (to be published), 2024.

[10] A. K. Patcha and E. Elmroth, "Containerization: A key enabler for
building and deploying cloud native applications," 2017 IEEE
International Conference on Cloud Engineering (ICEE), pp. 188-197,
doi: 10.1109/ICEE.2017.41

[11] M. Mao and M. R. Rahman, "Scalability in cloud computing:
Challenges and opportunities," 2012 IEEE Symposium on Computers
and Communications (ISCC), pp. 0012-0018, doi:
10.1109/ISCC.2012.6461324

[12] J. Chen, C. Ranjan, S. Sankaranarayanan, and K. Ramakrishnan, "A
framework for dynamic serverless function scaling using
reinforcement learning," 2019 IEEE International Conference on

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35637 | Page 6

Cloud Engineering (ICEE), pp. 1-10, doi:
10.1109/ICEE.2019.8799812

[13] M. Litke, "Infrastructure as Code (IaC) with Terraform," in
Continuous Delivery in .NET, Apress, 2017, pp. 209-234.

[14] Y. Gan, Y. Qin, D. Zhang, and A. Zhou, "A survey on usage of
monitoring tools in cloud computing environments," 2012 IEEE 4th
International Conference on Cloud Computing and Intelligence
Systems (CCIS), pp. 112-117, doi: 10.1109/CCIS.2012.6423280

[15] Y. Mao, R. Popa, Z. M. Mao, and M. S. Abdel-zaher, "Cost-aware
server consolidation in virtualized data centers," 2010 Proceedings of
the IEEE International Conference on Distributed Computing Systems
(ICDCS), pp. 501-510, doi: 10.1109/ICDCS.2010.44

[16] A. Bergel, R. Casley, J. Hamza-Moghaddam, and M. Raj, "Green
DevOps: Sustainable Software Engineering Practices," Springer
International Publishing, 2016.

[17] I. Khan, S. U. Khan, R. Buyya, A. Y. Zomaya, M. Cao, and A. Ghani,
"A survey on green cloud computing: frameworks, tools, and future
directions," Journal of Network and Computer Applications, vol. 137,
pp. 1-23, 2019, doi: 10.1016/j.jnca.2019.03.002

[18] T. Chen, Z. Zhou, and Z. Gong, "Fog computing resource
management: A survey," ACM Computing Surveys (CSUR), vol. 52,
no. 1, pp. 1-33, 2019, doi: 10.1145/3299920

[19] M. Laskowski, J. Apte, T. Eisenhauer, and A. Riecke, "Resource
Management in Kubernetes," Proceedings of the 12th ACM
International Conference on Computing Systems (EuroSys ’17),
ACM, pp. 499-512, 2017, doi: 10.1145/3051413.3051468

http://www.ijsrem.com/

