THE NEUTRIX PRODUCT OF THE DISTRIBUTIONS

$$
\mathbf{x}_{+}^{-\mathbf{r}} \text { AND } \boldsymbol{\delta}^{(\alpha)}(\mathbf{x})
$$

Sanjeev Srivastava ${ }^{1}$, Chinta Mani Tiwari ${ }^{2}$
${ }^{1,2}$ Department of Mathematics (School of Science) Maharishi University of Information Technology, Lucknow, Uttar Pradesh (India) Email address: sanjeevsrivastava2099@gmail.com¹, cmtiwari.12@gmail.com²

Abstract

In this paper author has obtained the neutrix product of $\mathrm{x}_{+}^{-\mathrm{r}}$ and $\delta^{(\alpha)}(\mathrm{x})$, where α is a positive fractional number.

Key Words: Neutrix limit, fractional-differentiation, sequence, function.

Ams Subject Classification- 46F

1. INTRODUCTION

Neutrix N is defined by J.G. vander Corput [2] as a commutative additive group of functions $v(\xi)$ defined on a domain N^{\prime} with values in additive group $\mathrm{N}^{\prime \prime}$, where further if for some v in $\mathrm{N}, \mathrm{v}(\xi)=\gamma$ for all ξ in N^{\prime}, then $\gamma=0$. The functions in N are called negligible functions. Now let N ' be a set contained in a topological space with a limit point b which does not belong to N^{\prime}. If $f(\xi)$ is a function defined on N^{\prime} with values in $\mathrm{N}^{\prime \prime}$ and it is possible to find a constant β such that $\mathrm{f}(\xi)-\beta$ is negligible in N , then β is called the neutrix limit or N -limit of f as ξ tends to b and we write

$$
N-\lim _{\xi \rightarrow b} f(\xi)=\beta,
$$

where β must be unique, if it exists.
Introducing the neutrix limit, Fisher [3,4] defined the neutrix product of two distributions as -

Definition (1.1):- Let f and g be arbitrary distributions and let

$$
\mathrm{g}_{\mathrm{n}}=\mathrm{g} * \delta_{\mathrm{n}}=\int_{-1 / \mathrm{n}}^{1 / \mathrm{n}} \mathrm{~g}(\mathrm{x}-\mathrm{t}) \delta_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}
$$

for $\mathrm{n}=1,2,3, \ldots \ldots .$. , where $\left\{\delta_{\mathrm{n}}\right\}$ converges to dirac-delta distribution δ, and $\delta_{\mathrm{n}}(\mathrm{x})=\mathrm{n} \rho(\mathrm{nx}), \rho$ is an infinitely differentiable function having the properties -
(i) $\rho(\mathrm{x})=0$ for $|\mathrm{x}| \geq 1$,
(ii) $\rho(\mathrm{x}) \geq 0$,
(iii) $\rho(\mathrm{x})=\rho(-\mathrm{x})$,
(iv) $\quad \int_{-1}^{1} \rho(x) d x=1$,

We say that the neutrix product fog of f and g exists and equal to a distribution h if
$\underset{\mathrm{n} \rightarrow \infty}{\mathrm{N}-\lim _{\infty}}\left\langle\mathrm{fg}_{\mathrm{n}}, \varphi\right\rangle=\mathrm{N}-\lim _{\mathrm{n} \rightarrow \infty}\left\langle\mathrm{f}, \mathrm{g}_{\mathrm{n}} \varphi\right\rangle=\langle\mathrm{h}, \varphi\rangle$,
for all test functions $\varphi \in K$, with support contained in the interval (a, b), where N is the neutrix having domain $\mathrm{N}^{\prime}=$ $\{1,2, \ldots . \mathrm{n}, \ldots .$.$\} and range \mathrm{N}^{\prime \prime}$ of the real numbers with negligible functions

$$
\mathrm{n}^{\lambda} \ln ^{\mathrm{r}-1} \mathrm{n}, \ln ^{\mathrm{r}} \mathrm{n},
$$

for $\lambda>0$, and $r=1,2, \ldots \ldots$ and all functions $f(n)$ for which $\lim _{n \rightarrow \infty} f(n)=0$.
${ }^{n \rightarrow \infty}$
Riemann - Liouville and Wéyl-fractional integral operators are defined in $[9, \mathrm{p} .47]$ for $\operatorname{Re} \alpha>0$ as -
and

$$
\left(\mathrm{I}^{\alpha} \mathrm{f}\right)(\mathrm{x})=\frac{1}{\Gamma(\alpha)} \int_{0}^{\mathrm{x}}(\mathrm{x}-\mathrm{t})^{\alpha-1} \mathrm{f}(\mathrm{t}) \mathrm{dt}
$$

$$
\left(\mathrm{K}^{\alpha} \mathrm{f}\right)(\mathrm{x})=\frac{1}{\Gamma(\alpha)} \int_{\mathrm{x}}^{\infty}(\mathrm{t}-\mathrm{x})^{\alpha-1} \mathrm{f}(\mathrm{t}) \mathrm{dt} .
$$

In [7, p.658] the fractional differential operator is defined as -

$$
\begin{align*}
\mathrm{I}^{-\alpha} \mathrm{f} & =\mathrm{D}^{\alpha} \mathrm{f} \tag{1.1}\\
\mathrm{~K}^{-\alpha} \mathrm{f} & =(-1)^{\alpha} \mathrm{D}^{\alpha} \mathrm{f} \tag{1.2}
\end{align*}
$$

and
These operators are adjoint, see [1],
i.e.

$$
\begin{equation*}
\left\langle\mathrm{I}^{-\alpha} \mathrm{f}, \varphi\right\rangle=\left\langle\mathrm{f}, \mathrm{~K}^{-\alpha} \varphi\right\rangle \tag{1.3}
\end{equation*}
$$

and $\quad\left\langle\mathrm{K}^{-\alpha} \mathrm{f}, \varphi\right\rangle=\left\langle\mathrm{f}, \mathrm{I}^{-\alpha} \varphi\right\rangle$
In [10] the neutrix product of $\mathrm{F}(\mathrm{x})$ and $\delta^{(\alpha)}(\mathrm{x})$ has obtained, where F is an infinitely differentiable function in every neighbourhood of the origin.
In the present paper, we will obtain the neutrix product of $\mathrm{x}_{+}^{-\mathrm{r}}$ and $\delta^{(\alpha)}(\mathrm{x})$, where α is a positive fractional number i.e. $\alpha=\mathrm{p}+\mathrm{q}, \mathrm{p}=1,2,3, \ldots \ldots$, and $0 \leq \mathrm{q}<1$. This result obviously generalizes the result obtained by Fisher [5].
2. In this section we will find the neutrix product of $\mathrm{x}_{+}^{-\mathrm{r}}$ and $\delta^{(\alpha)}(\mathrm{x})$, First of all we will prove the following theorem :

Theorem (2.1) - Let f be a distribution and $f(-x)=-f(x)$, for all x in an open interval $(-a, a)$. If $f(x)$ and all its derivatives vanish at $x=0$, then the neutrix product $\delta^{(\alpha)}$ with f exists and

$$
\delta^{(\alpha)} \circ \mathrm{f}=0
$$

Proof - Since $f(-x)=-f(x)$ for all x in the interval $(-a, a)$, then

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \delta_{\mathrm{n}}(\mathrm{x})=\int_{-1 / \mathrm{n}}^{1 / \mathrm{n}} \mathrm{f}(\mathrm{x}-\mathrm{t}) \delta_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}
$$

It follows that $f_{n}(-\mathrm{x})=-f_{n}(\mathrm{x})$, in all open intervals $\left(-\frac{1}{2} a\right.$, $\frac{1}{2} a$), when $\mathrm{n}>2 / a$.
Since f_{n} is continuous, $f_{n}(0)=0$, when $n>2 / a$, thus $\delta^{(\alpha)} \circ \mathrm{f}=0$.
Theorem (2.2) - The neutrix product $\left\{\mathrm{x}_{+}^{-\mathrm{r}} \circ \delta^{(\alpha)}(\mathrm{x})\right\}$ and $\delta^{(\alpha)}(\mathrm{x}) \circ \mathrm{X}_{+}^{-\mathrm{r}}$ exist and

$$
\begin{align*}
& \mathrm{x}_{+}^{-\mathrm{r}} \circ \delta^{(\alpha)}(\mathrm{x})=\frac{(-1)^{\mathrm{r}} \Gamma(\alpha+1)}{2 \Gamma(\alpha+\mathrm{r}+1)} \delta^{(\alpha+\mathrm{r})}(\mathrm{x}) \tag{2.3}\\
& \delta^{(\alpha)}(\mathrm{x}) \circ \mathrm{x}_{+}^{-\mathrm{r}}=0 \tag{2.4}
\end{align*}
$$

for $\mathrm{r}=1,2 \ldots .$.
Proof - For $\varphi \in K$, we have

$$
\left\langle\mathrm{x}_{+}^{-1}, \varphi(\mathrm{x})\right\rangle=\int_{0}^{\infty} \mathrm{x}^{-1}[\varphi(\mathrm{x})-\varphi(0) \mathrm{H}(1-\mathrm{x})] \mathrm{dx},
$$

where $H(x)$ denotes the Heavi-side's unit function and so

$$
\begin{aligned}
\left\langle x_{+}^{-1}, \delta_{\mathrm{n}}^{(\alpha)}(\mathrm{x}) \varphi(\mathrm{x})\right\rangle & =\int_{0}^{1} \mathrm{x}^{-1}\left[\begin{array}{c}
\delta_{\mathrm{n}}^{(\alpha)}(\mathrm{x}) \varphi(\mathrm{x}) \\
-\delta_{\mathrm{n}}{ }^{(\alpha)}(0) \varphi(0)
\end{array}\right] \mathrm{dx} \\
& =\int_{0}^{1 / \mathrm{n}} \mathrm{x}^{-1} \delta_{\mathrm{n}}^{(\alpha)}(\mathrm{x})[\varphi(\mathrm{x})-\varphi(0)] \mathrm{dx} \\
& +\varphi(0) \int_{0}^{1 / \mathrm{n}} \mathrm{x}^{-1}\left[\delta_{\mathrm{n}}{ }^{(\alpha)}(\mathrm{x})-\delta_{\mathrm{n}}^{(\alpha)}(0)\right] \mathrm{dx} \\
& -\delta_{\mathrm{n}}^{(\alpha)}(0) \varphi(0) \int_{1 / \mathrm{n}}^{1} \mathrm{x}^{-1} \mathrm{dx} \\
& =\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{I}_{1}=\int_{0}^{1 / \mathrm{n}} \delta_{\mathrm{n}}^{(\alpha)}(\mathrm{x}) & {\left[\sum_{\mathrm{m}=0}^{\alpha+1} \frac{\mathrm{x}^{\mathrm{m}-1}}{\Gamma(\mathrm{~m}+1)} \varphi^{(\mathrm{m})}(0)\right.} \\
& \left.+\frac{\mathrm{x}^{\alpha+1}}{\Gamma(\alpha+3)} \varphi^{(\alpha+2)}(\xi \mathrm{x})\right] \mathrm{dx},
\end{aligned}
$$

where $0 \leq \xi \leq 1$.
(by [8, p.40])
Substituting $\mathrm{nx}=\mathrm{t}$ we have

$$
\begin{aligned}
\mathrm{I}_{1}= & \sum_{\mathrm{m}=0}^{\alpha} \frac{\mathrm{n}^{\alpha+1-\mathrm{m}}}{\Gamma(\mathrm{~m}+1)} \varphi^{(\mathrm{m})}(0) \int_{0}^{1} \mathrm{t}^{\mathrm{m}-1} \rho^{(\alpha)}(\mathrm{t}) \mathrm{dt} \\
& \quad+\frac{\varphi^{(\alpha+1)}(0)}{\Gamma(\alpha+2)} \int_{0}^{1} \mathrm{t}^{\alpha} \rho^{(\alpha)}(\mathrm{t}) \mathrm{dt} \\
+ & \frac{\mathrm{n}^{-1}}{\Gamma(\alpha+3)} \int_{0}^{1} \mathrm{t}^{\alpha+1} \rho^{(\alpha)}(\mathrm{t}) \varphi^{(\alpha+2)}\left(\frac{\xi \mathrm{t}}{\mathrm{n}}\right) \mathrm{dt}
\end{aligned}
$$

Since $n^{\alpha+1-m} \int_{0}^{1} t^{m-1} \rho^{(\alpha)}(t) d t$ is negligible on neutrix limit N or zero for $\alpha>\mathrm{m}$, and

$$
\int_{0}^{1} \mathrm{t}^{\alpha} \rho^{(\alpha)}(\mathrm{t}) \mathrm{dt}=\frac{1}{2}(-1)^{\alpha} \Gamma(\alpha+1)
$$

$$
\text { and } \mathrm{n}^{-1} \int_{0}^{1} \mathrm{t}^{\alpha+1} \rho^{(\alpha)}(\mathrm{t}) \varphi^{(\alpha+2)}\left(\frac{\xi \mathrm{t}}{\mathrm{n}}\right) \mathrm{dt}=0\left(\frac{1}{\mathrm{n}}\right)
$$

It follows that

$$
\begin{aligned}
\mathrm{N}-\lim _{\mathrm{n} \rightarrow \infty} \mathrm{I}_{1} & =(-1)^{\mathrm{a}} \frac{\Gamma(\alpha+1) \varphi^{(\alpha+1)}(0)}{2 \Gamma(\alpha+2)} \\
& =(-1)^{\alpha} \frac{1}{2(\alpha+1)} \varphi^{(\alpha+1)}(0) \\
& =\frac{-(-1)^{\alpha+1}}{2(\alpha+1)} \varphi^{(\alpha+1)}(0) \\
& =-\frac{1}{2(\alpha+1)}\left\langle\delta^{(\alpha+1)}, \varphi\right\rangle
\end{aligned}
$$

Again

$$
\begin{aligned}
& \mathrm{I}_{2}=\varphi(0) \int_{0}^{\frac{1}{n}} \mathrm{x}^{-1}\left[\delta_{\mathrm{n}}{ }^{(\alpha)}(\mathrm{x})-\delta_{\mathrm{n}}{ }^{(\alpha)}(0)\right] \mathrm{dx} \\
& =\mathrm{n}^{\alpha+1} \varphi(0) \int_{0}^{1} \mathrm{t}^{-1}\left[\rho^{(\alpha)}(\mathrm{t})-\rho^{(\alpha)}(0)\right] \mathrm{dt}
\end{aligned}
$$

This gives

$$
N-\operatorname{limI}_{\mathrm{n} \rightarrow \infty}=0
$$

Similarly

$$
\begin{aligned}
\mathrm{I}_{3} & =-\delta_{\mathrm{n}}^{(\alpha)}(0) \varphi(0) \int_{1 / \mathrm{n}}^{1} \mathrm{x}^{-1} \mathrm{dx} \\
& =-\rho^{(\alpha)}(0) \varphi(0) \mathrm{n}^{\alpha+1} \ln \mathrm{n}
\end{aligned}
$$

and so

$$
\mathrm{N}-\operatorname{limI}_{\mathrm{n} \rightarrow \infty}=0
$$

It follows that

$$
N-\lim _{n \rightarrow \infty}\left\langle x_{+}^{-1}, \delta_{n}^{(\alpha)}(x) \varphi(x)\right\rangle=-\frac{1}{2(\alpha+1)}\left\langle\delta^{(a+1)}(x), \varphi(x)\right\rangle,
$$

for all test function φ.
Thus the neutrix product $\mathrm{x}_{+}^{-1} \circ \delta^{(\alpha)}(\mathrm{x})$ exists and

$$
x_{+}^{-1} \circ \delta^{(\alpha)}(\mathrm{x})=-\frac{1}{(\alpha+1)} \delta^{(\mathrm{a}+1)}(\mathrm{x})
$$

Equation (2.3) therefore holds for $\mathrm{r}=1$, Now assume that Equation (2.3) holds for some r , then by [5, theorem (2), p.1441] the neutrix product $\mathrm{x}_{+}^{-\mathrm{r}-1} \circ \delta^{(\alpha)}(\mathrm{x})$ exists and

$$
\left.\begin{array}{rl}
-\mathrm{rx} \\
+ \\
-\mathrm{r}-1
\end{array} \delta^{(\alpha)}(\mathrm{x})=\frac{(-1)^{\mathrm{r}} \Gamma(\alpha+1)}{2 \Gamma(\alpha+\mathrm{r}+1)} \delta^{(\alpha+\mathrm{r}+1)}\right) \quad \begin{aligned}
&-\mathrm{x}_{+}^{-\mathrm{r}} \circ \delta^{(\alpha+1)}(\mathrm{x}) \\
& \frac{(-1)^{\mathrm{r}} \mathrm{r} \Gamma(\alpha+1)}{2 \Gamma(\alpha+\mathrm{r}+2)} \delta^{(\alpha+\mathrm{r}+1)}(\mathrm{x})
\end{aligned}
$$

This gives

$$
\mathrm{x}_{+}^{-\mathrm{r}-1} \circ \delta^{(\alpha)}(\mathrm{x})=\frac{(-1)^{\mathrm{r}+1} \Gamma(\alpha+1)}{2 \Gamma(\alpha+\mathrm{r}+2)} \delta^{(\alpha+\mathrm{r}+1)}(\mathrm{x})
$$

Hence equation (2.3) follow by induction.
We now consider the neutrix product $\delta^{(\alpha)}(\mathrm{x}) \circ \mathrm{x}_{+}^{-\mathrm{r}}$ for $\mathrm{r}=1,2$, ...

Since

$$
\left(\mathrm{x}_{+}^{-\mathrm{r}}\right)_{\mathrm{n}}=\mathrm{x}_{+}^{-\mathrm{r}} * \delta_{\mathrm{n}}
$$

$$
=\frac{(-1)^{r-1}}{(\mathrm{r}-1)!} \int_{-1 / \mathrm{n}}^{\mathrm{x}} \ln (\mathrm{x}-\mathrm{s}) \delta_{\mathrm{n}}^{(\mathrm{r})}(\mathrm{s}) \mathrm{ds},
$$

it follows for arbitrary test function φ
$\left\langle\delta(x),\left(x_{+}^{-r}\right)_{n} \varphi(x)\right\rangle=\frac{(-1)^{r-1} \varphi(0)}{(r-1)!} \int_{-1 / n}^{0} \ln (-s) \delta_{n}^{(r)}(s) d s$.
Making the substitution ns $=-\mathrm{t}$, we have

$$
\begin{aligned}
\int_{-1 / \mathrm{n}}^{0} \ln (-\mathrm{s}) \delta_{\mathrm{n}}^{(\mathrm{r})}(\mathrm{s}) \mathrm{ds} & =(-1)^{\mathrm{r}} \mathrm{n}^{\mathrm{r}} \int_{0}^{1} \ln \left(\frac{\mathrm{t}}{\mathrm{n}}\right) \rho^{(\mathrm{r})}(\mathrm{t}) \mathrm{dt} \\
& =(-1)^{\mathrm{r}} \mathrm{n}^{\mathrm{r}} \int_{0}^{1} \ln \mathrm{t} \rho^{(\mathrm{r})}(\mathrm{t}) \mathrm{dt} \\
& -(-1)^{\mathrm{r}} \mathrm{n}^{\mathrm{r}} \ln \mathrm{n} \int_{0}^{1} \rho^{(\mathrm{r})}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

which is either negligible on neutrix limits or zero for $r=$ 1,2,3 It follows that

$$
N-\lim _{\mathrm{n} \rightarrow \infty}\left\langle\delta(\mathrm{x}),\left(\mathrm{x}_{+}^{-r}\right)_{\mathrm{n}} \varphi(\mathrm{x})\right\rangle=0
$$

for all test function φ.
Thus the neutrix product $\delta(\mathrm{x}) \circ \mathrm{X}_{+}^{-\mathrm{r}}$ exists and

$$
\delta(x) \circ \mathrm{x}_{+}^{-\mathrm{r}}=0 .
$$

Thus equation (2.4) holds when $\alpha=0$.
Now we consider the neutrix product $\delta^{(\alpha)}(\mathrm{x}) \circ \mathrm{x}_{+}^{-\mathrm{r}}$
$\left\langle\delta^{(\alpha)}(\mathrm{x}),\left(\mathrm{x}_{+}^{-\mathrm{r}}\right)_{\mathrm{n}} \varphi(\mathrm{x})\right\rangle=\left\langle\mathrm{I}^{-\alpha} \delta(\mathrm{x}),\left(\mathrm{x}_{+}^{-\mathrm{r}}\right)_{\mathrm{n}} \varphi(\mathrm{x})\right\rangle$

$$
=\left\langle\delta(\mathrm{x}), \mathrm{K}^{-\alpha}\left\{\left(\mathrm{x}_{+}^{-\mathrm{r}}\right)_{\mathrm{n}} \varphi(\mathrm{x})\right\}\right\rangle
$$

[By equation (1.3)]

$$
\begin{aligned}
& =\left\langle\delta(\mathrm{x}), \sum_{\mathrm{r}=0}^{\infty}{ }^{\alpha} \mathrm{C}_{\mathrm{r}} \mathrm{~K}^{-(\alpha-\mathrm{r})}\left(\mathrm{x}_{+}^{-\mathrm{r}}\right)_{\mathrm{n}} \varphi^{(\mathrm{r})}(\mathrm{x})\right\rangle \\
= & \sum_{\mathrm{r}=0}^{\infty}{ }^{\alpha} \mathrm{C}_{\mathrm{r}} \varphi^{(\mathrm{r})}(0)\left\{\mathrm{K}^{-(\alpha-\mathrm{r})}\left(\mathrm{x}_{+}^{-\mathrm{r}}\right)_{\mathrm{n}}\right\}_{\mathrm{x}=0},
\end{aligned}
$$

which is again zero or negligible in N. Hence

$$
N-\lim _{\mathrm{n} \rightarrow \infty} \delta^{(\alpha)}(\mathrm{x}) \circ \mathrm{x}_{+}^{-\mathrm{r}}=0
$$

i.e. equation (2.4) holds for every positive fractional number α

REFERENCES

1. Ahuja, G: An application of fractional differentiation to study the product of two distributions; Journal of M.A.C.T., vol. 21 (1988) ps.17-23.
2. vander Corput, J.G: introduction to the neutrix calculus; Journal d'analyse mathematique 7(1959-60) ps. 291-398.
3. Fisher, B.: Neuritces and the product of distributions; StudiaMathematica, vol. 57 (1956) ps.263-274
4. Fisher, B.: The non-commutative neutrix product of distribution; Math Nachr 108 (1982) ps. 117-127.
5. Fisher, B.: The non-commutative neutrix product of distribution x_{+}^{-r} and $\delta^{p}(\mathrm{x})$; Indian J. pure appli. Math. 14 (12), December (1983) ps. 1439-1449.
6. Gelfand, I.M. \& Shilov, G.E.: Generalized functions vol-I; academic Press New York (1964).
7. Osler, T.J.: Leibniz rule for fractional derivatives, generalized and an application to infinite series; SIAM J. Math 18 (1970) ps. 658 674.
8. Osler, T.J.: Taylor's series generalized for fractional derivatives and applications; SIAM J. Math. Anal. Vol. 2 No.1, February (1971) ps. 37-48.
9. Sneddon, I.N: Mixed boundary value problem in potential theory; North-Holland publishing company, Amsterdam (1956).
10. Tiwari, C.M.: A note on the dirac-delta function; The Aligarh Bulletin of Mathematics vol. 25 No. 1 (2006) ps. 11-15.
Department of Mathematics (School of Science)
Maharishi University of Information Technology,
Lucknow, Uttar Pradesh (India)

ACKNOWLEDGEMENT

The author wishes to express his indebtedness to Dr. Gopi Ahuja for his guidance and encouragement.

