j.-t' “ARe
¢ TISREM 3

Sy e Jeurnal

W Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

The Role of Data Structures in Traversal: A Comparative Memory Analysis
of BFS and DFS

Gayatri Kadu!, Jyotsna Mahajan?, Dr. Anupama Bhalerao?

'Gayatri Kadu, MTech Computer Science & Engineering, JSPM University Pune
’Jyotsna Mahajan, MTech Computer Science & Engineering, JSPM University Pune
3Professor.Anupama Bhalerao, JSPM University Pune

Abstract - Graph traversal algorithms are a fundamental
component of computational mathematics and computer
science. The two most common methods, Breadth-First Search
(BFS) and Depth-First Search (DFS), are often presented as
distinct algorithms. This paper argues that BFS and DFS are, in
fact, two variations of a single, generic traversal algorithm, and
that their profound differences in behaviour including traversal
order, optimality, and memory usage are a direct mathematical
consequence of their underlying data structure: a Queue (First-
In, First-Out) for BFS and a Stack (Last-In, First-Out) for DFS.

We perform a theoretical space-complexity analysis,

contrasting the exponential O(bd) memory requirement of BFS
with the linear-in-depth O(b.d) of DFS, where b is the
branching factor and d is the depth. We then validate this
theory with an empirical memory analysis on graph topologies
specifically designed to target the worst-case scenarios for each
algorithm. Our findings confirm that the choice of data
structure is the defining factor that dictates the performance
and feasibility of a graph traversal.

Key Words: Graph Traversal, BFS, DFS, Data Structures,
Space Complexity, Computational Mathematics.

1.INTRODUCTION

Graphs are a powerful mathematical abstraction used to
model a vast array of real-world systems, from social
networks and web pages to molecular structures and state-
space problems [1],[6]. The ability to systematically
explore these graphs—a process known as traversal—is a
foundational task in computing. The two cornerstone
traversal algorithms, Breadth-First Search (BFS) and
Depth-First Search (DFS), provide the basis for countless
other algorithms, such as finding shortest paths, detecting
cycles, and performing topological sorts [2].

In introductory computer science, BFS and DFS are often
taught as two separate, distinct procedures. BFS is known
for its level-order traversal and its use in finding the
shortest path in unweighted graphs. DFS is known for its
deep, backtracking traversal and its comparatively low
memory footprint. This paper posits that this distinction is
artificial. The core logic of BFS and DFS is identical.
Their fundamental difference lies in a single choice of

abstract data type: the structure used to store the "frontier"
or "fringe" of nodes yet to be visited [4]. BFS uses a
Queue (First-In, First-Out or FIFO). DFS uses a Stack
(Last-In, First-Out or LIFO).

This paper demonstrates that this single design choice is
not an implementation detail but the defining
mathematical characteristic of each algorithm. We will
show that the FIFO nature of the queue mathematically
guarantees a level-order traversal, which in turn leads to
its optimality for shortest paths [1] and its exponential
O(bd) space complexity [3]. Conversely, the LIFO nature
of the stack guarantees a deep, backtracking path, leading
to its non-optimality but highly efficient O(b.d) space
complexity [3]. To validate this thesis, we will first
present a unified traversal algorithm. We will then derive
the theoretical space complexities and, finally, perform an
empirical memory profiling experiment on two classes of
graphs: "wide" (high branching factor, low depth) and
"deep" (low branching factor, high depth) to demonstrate
the stark, predictable performance trade-offs.

2. TRAVERSAL AS A UNIFIED

ALGORITHM

At a high level of abstraction, BFS and DF'S are identical. Both
algorithms partition the graph's nodes into three sets: visited,
unvisited, and the "frontier" (nodes adjacent to visited nodes
but not yet visited themselves) [4]. The only difference is the
order in which the frontier is explored. We can define a single,
generic traversal algorithm as follows:

Algorithm 1: GENERIC-TRAVERSE(Graph G, Node
start_node)

1: Let F be a "frontier" data structure
2: Let V be a "visited" set

3: F.add(start_node)

4: V.add(start_node)

5: while F is not empty:

6: current_node = F.remove()

7: (process current node)

8: for each neighbor N of current_node:

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53434 |

Page 1

https://ijsrem.com/

{.-t.' 1Y
¢ TISREM 3

h .o g7 International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

9:if Nisnotin V:
10: V.add(N)
11: F.add(N)

This single algorithm transforms into BFS or DFS based on the
implementation of F [4].

2.1. BFS (Breadth-First Search) via Queue If F is a Queue
(FIFO):

e F.add(N) becomes enqueue(N).

e F.remove() becomes dequeue().

When nodes are processed, their neighbors are added to the
back of the queue. The algorithm must finish processing all
nodes at a given level k before the nodes at level k+1, which
they added, can reach the front of the queue. This FIFO
mechanism forces a level-by-level traversal [1].

2.2. DFS (Depth-First Search) via Stack If F is a Stack
(LIFO):

e F.add(N) becomes push(N).

e F.remove() becomes pop().

When a node is processed, its neighbors are pushed onto the
top of the stack. The next node to be processed is the last one
that was added. This LIFO mechanism forces the algorithm to
dive as deeply as possible down a single path before
backtracking to explore siblings [2].

3. THEORETICAL MEMORY ANALYSIS

The most significant consequence of the Queue vs. Stack
choice is its impact on space complexity. This analysis is
central to computational mathematics and Al state-space search
[3]. Let b be the maximum branching factor of the graph and d
be the maximum depth.

3.1. Space Complexity of BFS (Queue) In a BFS, the queue
must store all nodes at a given level before it can begin
processing the nodes at the next level [1]. The peak memory
usage occurs when the algorithm is transitioning between the
two widest adjacent levels. In the worst case (a complete,
uniform tree), the widest level is the final level d, which

contains b% nodes. The queue must hold all of these nodes
simultaneously. Therefore, the space complexity of BFS is:

o

This exponential complexity, common in Al search [3], means
that for "bushy" graphs with a high branching factor, BFS will
rapidly consume all available memory.

3.2. Space Complexity of DFS

In a DFS, the stack (or the call stack, in a recursive
implementation) only needs to store the nodes along the single
path it is currently exploring [2]. When it backtracks, nodes are
popped off the stack. The peak memory usage occurs when the
algorithm reaches the deepest part of the graph. The stack must
store the d nodes along this path. At any given node on this
path, it may also store its siblings in the stack to be explored
later. In the worst case, this is (b-1) siblings for each of the d
nodes in the path [3]. Therefore, the space complexity of DFS
is: O(b.d)

This linear-in-depth-complexity is astronomically more
efficient than BFS's exponential complexity. A graph with
b=10 and d=10 would require O(10.10) = O(100) space for

DFS, but 0(1010) space for BFS [7].

3.3. Extended Equations
Theoretical space complexity equations:

BFS Space Complexity: O(bd)

DFS Space Complexity: O(b * d)

Where b is the branching factor and d is the depth of the graph.
Example Calculation:

Forb=3 and d = 10:

- BFS requires 0(310) = 59,049 units of memory

- DFS requires O(3 * 10) = 30 units of memory

4. EMPIRICAL METHODOLOGY AND RESULTS

To validate this theoretical O(bd) vs. O(b .d) divergence, we
conducted an empirical memory profiling study.

4.1. Experimental Setup

The algorithms were implemented in Python 3.10. We used the
built-in collections deque as a queue (for BFS) and as a stack
(for DFS) to ensure a fair comparison of the data structures.
Memory usage was profiled using Python's trace malloc
library, recording the peak memory allocated by the algorithm.

4.2. Graph Generation

To further illustrate the theoretical differences in space
complexity between BFS and DFS, we present both a 2D line
chart and additional mathematical equations.

Figure 1: Space complexity comparison for BFS and DFS with
branching factor b =3 and depth d from 1 to 15.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53434 |

Page 2

https://ijsrem.com/

{.‘t-, ‘33‘
¢ TISREM 3

<Journal

W Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

1e7 Space Complexity Comparison of BFS and OFS

Table 2: PEAK MEMORY USAGE ON "DEEP" GRAPH
(b=3, d=15, Total Nodes: ~21.5 million)

1_::—0- ui#.rmt‘n‘ ’
DFS: Olbed) 'l
|
12+ { . Data Theoretical Peak
| Algorithm .
| Structure Complexity Memory
10+ 'l
2 |
* |
'g 08+ ll
',' BFS Queue o(b% ~2.21 GB
3064 /
64 / DFS Stack O(b.d) ~1.2 MB
02 //‘
__F,/-(

Depth |d)

4.3. Results and Analysis

The peak memory usage for both algorithms on both graphs is

recorded below.

Table 1: PEAK MEMORY USAGE ON "WIDE" GRAPH
(b=15, d=6, Total Nodes: ~ 11.4 million)

The results from Table 2 confirm the hypothesis. Despite
having nearly twice the total nodes as the "Wide" graph, the
"Deep" graph was still computationally trivial for DFS, whose
memory usage scales with b.d = 3*1 =45. BFS, however, was
even worse. Its memory cost is dictated by the widest level
315.14.3 million nodes), consuming over 2 GB of memory.

These empirical results are a clear and direct validation of the
theoretical models [3]. The memory performance is not just
different; it is in a completely different complexity class,
dictated entirely by the FIFO (Queue) vs. LIFO (Stack) data

structure.
5. DISCUSSION AND IMPLICATIONS

The mathematical analysis and empirical data confirm that the
choice between a Queue and a Stack is the single most
important design decision in a graph traversal [4],[7]. This has
profound implications for real-world applications.

Shortest Path Problems: For finding the shortest
path (e.g., "friends of friends" in a social network, or
GPS routing), BFS is required. Its level-order

. Data Theoretical Peak
Algorithm .
Structure Complexity Memory
BFS Queue ob% ~1.72 GB
DFS Stack O(b.d) ~2.1 MB

traversal is mathematically guaranteed to find the

optimal path in unweighted graphs [1]. The O(bd)

The analysis of Table -1 is stark. On the "Wide" graph, BFS's
memory usage exploded. Its queue had to hold a significant
portion of the final level's 15° ~ 11.4 million nodes, resulting

in gigabytes of memory consumption. DFS, in contrast, only
needed to store the b.d = 15%6=90 nodes for its path and

siblings, using a trivial amount of memory.

memory cost is the price of optimality. For weighted
graphs, this same principle is extended by replacing
the FIFO Queue with a Priority Queue, the foundation
of Dijkstra's algorithm [8].

Pathfinding & Puzzles: In Al such as solving a
maze or a game tree, we often just need a solution, not
the shortest one [3]. The O(b.d) memory cost of DFS
(a direct result of the Stack) makes it the only feasible
option for exploring very deep search trees, avoiding
the memory explosion of BFS.

Web Crawling: A web crawler is a real-world
example of BFS [6]. The set of "URLs to visit" is a

massive, disk-backed queue. The O(bd) complexity is
a primary challenge in web-scale engineering.

ijsrem.com DOI: 10.55041/IJSREM53434 | Page 3

© 2025, JSREM | https:

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

e Cycle Detection: The LIFO nature of the DFS stack
is the foundation for efficient cycle detection and
topological sorting in directed graphs, a task that is
much less intuitive with a BFS queue [2]. This
capability was famously formalized by Tarjan [5].

3. CONCLUSION

This paper has formally demonstrated that Breadth-First Search
and Depth-First Search are not two distinct algorithms, but two
instantiations of a single traversal paradigm. Their
fundamental, defining difference is the abstract data structure
used to manage the frontier. The Queue (FIFO) structure of

BFS forces a level-order traversal, which guarantees optimality

for shortest paths but at the cost of exponential O(bd) space
complexity. The Stack (LIFO) structure of DFS forces a depth-

first traversal, which sacrifices optimality but achieves a far
more efficient linear O(b.d) space complexity. Our empirical
analysis on "wide" and "deep" graph topologies confirmed this
theoretical divergence in a practical setting. This analysis
serves as a foundational case study in computational
mathematics, illustrating how a single, core data structure
choice can have profound, predictable, and mathematically
provable consequences on an algorithm's performance,

complexity, and real-world feasibility.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. MIT Press, 2009.

[2] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Addison-Wesley
Professional, 2011.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 4th ed. Pearson, 2020.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms. Addison-Wesley, 1983.

[5] R. E. Tarjan, "Depth-first search and linear graph algorithms,"
SIAM Journal on Computing, vol. 1, no. 2, pp. 146-160, 1972.

[6] J. Kleinberg and E. Tardos, Algorithm Design. Addison-Wesley,
2005.

[7] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer,
2008.

[8] E. W. Dijkstra, "A note on two problems in connexion with
graphs," Numerische Mathematik, vol. 1, pp. 269-271, 1959.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53434 | Page 4

https://ijsrem.com/

