
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53434 | Page 1

The Role of Data Structures in Traversal: A Comparative Memory Analysis

of BFS and DFS

Gayatri Kadu1, Jyotsna Mahajan2, Dr. Anupama Bhalerao3

1Gayatri Kadu, MTech Computer Science & Engineering, JSPM University Pune
2Jyotsna Mahajan, MTech Computer Science & Engineering, JSPM University Pune

3Professor.Anupama Bhalerao, JSPM University Pune

Abstract - Graph traversal algorithms are a fundamental

component of computational mathematics and computer

science. The two most common methods, Breadth-First Search

(BFS) and Depth-First Search (DFS), are often presented as

distinct algorithms. This paper argues that BFS and DFS are, in

fact, two variations of a single, generic traversal algorithm, and

that their profound differences in behaviour including traversal

order, optimality, and memory usage are a direct mathematical

consequence of their underlying data structure: a Queue (First-

In, First-Out) for BFS and a Stack (Last-In, First-Out) for DFS.

We perform a theoretical space-complexity analysis,

contrasting the exponential O(𝑏𝑑) memory requirement of BFS

with the linear-in-depth O(b.d) of DFS, where b is the

branching factor and d is the depth. We then validate this

theory with an empirical memory analysis on graph topologies

specifically designed to target the worst-case scenarios for each

algorithm. Our findings confirm that the choice of data

structure is the defining factor that dictates the performance

and feasibility of a graph traversal.

Key Words: Graph Traversal, BFS, DFS, Data Structures,

Space Complexity, Computational Mathematics.

1.INTRODUCTION

Graphs are a powerful mathematical abstraction used to

model a vast array of real-world systems, from social

networks and web pages to molecular structures and state-

space problems [1],[6]. The ability to systematically

explore these graphs—a process known as traversal—is a

foundational task in computing. The two cornerstone

traversal algorithms, Breadth-First Search (BFS) and

Depth-First Search (DFS), provide the basis for countless

other algorithms, such as finding shortest paths, detecting

cycles, and performing topological sorts [2].

In introductory computer science, BFS and DFS are often

taught as two separate, distinct procedures. BFS is known

for its level-order traversal and its use in finding the

shortest path in unweighted graphs. DFS is known for its

deep, backtracking traversal and its comparatively low

memory footprint. This paper posits that this distinction is

artificial. The core logic of BFS and DFS is identical.

Their fundamental difference lies in a single choice of

abstract data type: the structure used to store the "frontier"

or "fringe" of nodes yet to be visited [4]. BFS uses a

Queue (First-In, First-Out or FIFO). DFS uses a Stack

(Last-In, First-Out or LIFO).

This paper demonstrates that this single design choice is

not an implementation detail but the defining

mathematical characteristic of each algorithm. We will

show that the FIFO nature of the queue mathematically

guarantees a level-order traversal, which in turn leads to

its optimality for shortest paths [1] and its exponential

O(𝑏𝑑) space complexity [3]. Conversely, the LIFO nature

of the stack guarantees a deep, backtracking path, leading

to its non-optimality but highly efficient O(b.d) space

complexity [3]. To validate this thesis, we will first

present a unified traversal algorithm. We will then derive

the theoretical space complexities and, finally, perform an

empirical memory profiling experiment on two classes of

graphs: "wide" (high branching factor, low depth) and

"deep" (low branching factor, high depth) to demonstrate

the stark, predictable performance trade-offs.

2. TRAVERSAL AS A UNIFIED

ALGORITHM
At a high level of abstraction, BFS and DFS are identical. Both

algorithms partition the graph's nodes into three sets: visited,

unvisited, and the "frontier" (nodes adjacent to visited nodes

but not yet visited themselves) [4]. The only difference is the

order in which the frontier is explored. We can define a single,

generic traversal algorithm as follows:

Algorithm 1: GENERIC-TRAVERSE(Graph G, Node

start_node)

1: Let F be a "frontier" data structure

2: Let V be a "visited" set

3: F.add(start_node)

4: V.add(start_node)

5: while F is not empty:

6: current_node = F.remove()

7: (process current_node)

8: for each neighbor N of current_node:

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53434 | Page 2

9: if N is not in V:

10: V.add(N)

11: F.add(N)

This single algorithm transforms into BFS or DFS based on the

implementation of F [4].

2.1. BFS (Breadth-First Search) via Queue If F is a Queue

(FIFO):

• F.add(N) becomes enqueue(N).

• F.remove() becomes dequeue().

When nodes are processed, their neighbors are added to the

back of the queue. The algorithm must finish processing all

nodes at a given level k before the nodes at level k+1, which

they added, can reach the front of the queue. This FIFO

mechanism forces a level-by-level traversal [1].

2.2. DFS (Depth-First Search) via Stack If F is a Stack

(LIFO):

• F.add(N) becomes push(N).

• F.remove() becomes pop().

When a node is processed, its neighbors are pushed onto the

top of the stack. The next node to be processed is the last one

that was added. This LIFO mechanism forces the algorithm to

dive as deeply as possible down a single path before

backtracking to explore siblings [2].

3. THEORETICAL MEMORY ANALYSIS

The most significant consequence of the Queue vs. Stack

choice is its impact on space complexity. This analysis is

central to computational mathematics and AI state-space search

[3]. Let b be the maximum branching factor of the graph and d

be the maximum depth.

3.1. Space Complexity of BFS (Queue) In a BFS, the queue

must store all nodes at a given level before it can begin

processing the nodes at the next level [1]. The peak memory

usage occurs when the algorithm is transitioning between the

two widest adjacent levels. In the worst case (a complete,

uniform tree), the widest level is the final level d, which

contains 𝑏𝑑 nodes. The queue must hold all of these nodes

simultaneously. Therefore, the space complexity of BFS is:

O(𝑏𝑑)

This exponential complexity, common in AI search [3], means

that for "bushy" graphs with a high branching factor, BFS will

rapidly consume all available memory.

3.2. Space Complexity of DFS

In a DFS, the stack (or the call stack, in a recursive

implementation) only needs to store the nodes along the single

path it is currently exploring [2]. When it backtracks, nodes are

popped off the stack. The peak memory usage occurs when the

algorithm reaches the deepest part of the graph. The stack must

store the d nodes along this path. At any given node on this

path, it may also store its siblings in the stack to be explored

later. In the worst case, this is (b-1) siblings for each of the d

nodes in the path [3]. Therefore, the space complexity of DFS

is: O(b.d)

This linear-in-depth-complexity is astronomically more

efficient than BFS's exponential complexity. A graph with

b=10 and d=10 would require O(10.10) = O(100) space for

DFS, but O(1010) space for BFS [7].

3.3. Extended Equations

Theoretical space complexity equations:

BFS Space Complexity: O(𝑏𝑑)

DFS Space Complexity: O(b * d)

Where b is the branching factor and d is the depth of the graph.

Example Calculation:

For b = 3 and d = 10:

- BFS requires O(310) = 59,049 units of memory

- DFS requires O(3 * 10) = 30 units of memory

4. EMPIRICAL METHODOLOGY AND RESULTS

To validate this theoretical O(𝑏𝑑) vs. O(b .d) divergence, we

conducted an empirical memory profiling study.

4.1. Experimental Setup

The algorithms were implemented in Python 3.10. We used the

built-in collections deque as a queue (for BFS) and as a stack

(for DFS) to ensure a fair comparison of the data structures.

Memory usage was profiled using Python's trace malloc

library, recording the peak memory allocated by the algorithm.

4.2. Graph Generation

To further illustrate the theoretical differences in space

complexity between BFS and DFS, we present both a 2D line

chart and additional mathematical equations.

Figure 1: Space complexity comparison for BFS and DFS with

branching factor b = 3 and depth d from 1 to 15.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53434 | Page 3

4.3. Results and Analysis

The peak memory usage for both algorithms on both graphs is

recorded below.

Table 1: PEAK MEMORY USAGE ON "WIDE" GRAPH

(b=15, d=6, Total Nodes: ~ 11.4 million)

The analysis of Table -1 is stark. On the "Wide" graph, BFS's

memory usage exploded. Its queue had to hold a significant

portion of the final level's 156 ~ 11.4 million nodes, resulting

in gigabytes of memory consumption. DFS, in contrast, only

needed to store the b.d = 15*6=90 nodes for its path and

siblings, using a trivial amount of memory.

Table 2: PEAK MEMORY USAGE ON "DEEP" GRAPH

(b=3, d=15, Total Nodes: ~21.5 million)

Algorithm
Data

Structure

Theoretical

Complexity

Peak

Memory

BFS Queue O(𝑏𝑑) ~2.21 GB

DFS Stack O(b.d) ~1.2 MB

The results from Table 2 confirm the hypothesis. Despite

having nearly twice the total nodes as the "Wide" graph, the

"Deep" graph was still computationally trivial for DFS, whose

memory usage scales with b.d = 3*1 =45. BFS, however, was

even worse. Its memory cost is dictated by the widest level

315~14.3 million nodes), consuming over 2 GB of memory.

These empirical results are a clear and direct validation of the

theoretical models [3]. The memory performance is not just

different; it is in a completely different complexity class,

dictated entirely by the FIFO (Queue) vs. LIFO (Stack) data

structure.

5. DISCUSSION AND IMPLICATIONS

The mathematical analysis and empirical data confirm that the

choice between a Queue and a Stack is the single most

important design decision in a graph traversal [4],[7]. This has

profound implications for real-world applications.

• Shortest Path Problems: For finding the shortest

path (e.g., "friends of friends" in a social network, or

GPS routing), BFS is required. Its level-order

traversal is mathematically guaranteed to find the

optimal path in unweighted graphs [1]. The O(𝑏𝑑)

memory cost is the price of optimality. For weighted

graphs, this same principle is extended by replacing

the FIFO Queue with a Priority Queue, the foundation

of Dijkstra's algorithm [8].

• Pathfinding & Puzzles: In AI, such as solving a

maze or a game tree, we often just need a solution, not

the shortest one [3]. The O(b.d) memory cost of DFS

(a direct result of the Stack) makes it the only feasible

option for exploring very deep search trees, avoiding

the memory explosion of BFS.

• Web Crawling: A web crawler is a real-world

example of BFS [6]. The set of "URLs to visit" is a

massive, disk-backed queue. The O(𝑏𝑑) complexity is

a primary challenge in web-scale engineering.

Algorithm
Data

Structure

Theoretical

Complexity

Peak

Memory

BFS Queue O(𝑏𝑑) ~1.72 GB

DFS Stack O(b.d) ~2.1 MB

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53434 | Page 4

• Cycle Detection: The LIFO nature of the DFS stack

is the foundation for efficient cycle detection and

topological sorting in directed graphs, a task that is

much less intuitive with a BFS queue [2]. This

capability was famously formalized by Tarjan [5].

3. CONCLUSION

This paper has formally demonstrated that Breadth-First Search

and Depth-First Search are not two distinct algorithms, but two

instantiations of a single traversal paradigm. Their

fundamental, defining difference is the abstract data structure

used to manage the frontier. The Queue (FIFO) structure of

BFS forces a level-order traversal, which guarantees optimality

for shortest paths but at the cost of exponential O(𝑏𝑑) space

complexity. The Stack (LIFO) structure of DFS forces a depth-

first traversal, which sacrifices optimality but achieves a far

more efficient linear O(b.d) space complexity. Our empirical

analysis on "wide" and "deep" graph topologies confirmed this

theoretical divergence in a practical setting. This analysis

serves as a foundational case study in computational

mathematics, illustrating how a single, core data structure

choice can have profound, predictable, and mathematically

provable consequences on an algorithm's performance,

complexity, and real-world feasibility.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed. MIT Press, 2009.

[2] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Addison-Wesley

Professional, 2011.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern

Approach, 4th ed. Pearson, 2020.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and

Algorithms. Addison-Wesley, 1983.

[5] R. E. Tarjan, "Depth-first search and linear graph algorithms,"

SIAM Journal on Computing, vol. 1, no. 2, pp. 146-160, 1972.

[6] J. Kleinberg and É. Tardos, Algorithm Design. Addison-Wesley,

2005.

[7] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer,

2008.

[8] E. W. Dijkstra, "A note on two problems in connexion with

graphs," Numerische Mathematik, vol. 1, pp. 269–271, 1959.

https://ijsrem.com/

