f.’ ‘3%

us"y INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

w VOLUME: 06 ISSUE: 07 | JULY - 2022

The Role of Micro Frontends in Scaling E-commerce Platforms

SJIF RATING: 7.185 ISSN: 2582-3930

Vivek Jain,
Manager I, Front End Development, Ahold Delhaize, USA
vivek65vinu@gmail.com

Abstract— The exponential growth of e-commerce
platforms has increased the need for scalable,
maintainable, and high-performing front-end
architectures. Traditional monolithic frontends often
face challenges in deployment, development
efficiency, and scalability. Micro Frontends, an
architectural approach inspired by Microservices,
offer a solution by breaking large frontends into
modular, independently deployable units. This paper
explores the role of Micro Frontends in scaling e-
commerce platforms. It highlights the benefits,
challenges, and practical implementation strategies,
while analyzing their impact on performance,
development workflows, and user experience. A case
study demonstrates the effectiveness of Micro
Frontends in real-world scenarios, showcasing their

potential to transform modern e-commerce
platforms.

Keywords— Micro Frontends, E-commerce
Platforms, Frontend Scalability, Modular
Architectures, Performance Optimization, Technology
Diversity, Deployment Agility, Independent

Deployment, Team Autonomy

INTRODUCTION

The digital transformation of commerce has led to the
exponential growth of e-commerce platforms,
necessitating architectures that can scale seamlessly to
accommodate traffic surges, feature diversity, and rapid
technological evolution. Traditional monolithic frontends
pose constraints, including slower development cycles,
limited scalability, and difficulties in maintaining and
deploying changes. Micro frontends, inspired by the

success of microservices in backend architectures, have
emerged as a solution to decouple and modularize front-
end development. Use the enter key to start a new
paragraph. The appropriate spacing and indent are
automatically applied.

Source control Build and test pipeline Production

I~

-

e—— _’m_.--’
=
-

e e u_’m_’-/
=

Three apps composex
into one in production

]
I

Micro frontend A —

Il. PRINCIPLES OF MICRO FRONTEND ARCHITECRTURE

Micro frontends encapsulate distinct parts of an
application's user interface (Ul) into self-contained,
independently deployable units. Key principles include:

1. Single Responsibility: Each micro frontend
focuses on a specific feature or domain.

2. Technology Agnosticism: Teams can choose
appropriate tools and frameworks for their
modules.

3. Independent Deployment: Modules can be
deployed independently without affecting the
whole application.

4. Team Autonomy: Cross-functional teams can
own and manage individual micro frontends.

I1l. BENEFITS OF MICRO FRONTEND FOR E-COMMERCE
PLATFORMS

1. Scalability: By segmenting the Ul into
modular components, micro frontends enable

© 2022, 1JSREM | www.ijsrem.com

DOI: 10.55041/IJSREM15389 |

Pagel

http://www.ijsrem.com/

e-Journal

w VOLUME: 06 ISSUE: 07 | JULY - 2022

%7 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)
SJIF RATING: 7.185 ISSN: 2582-3930

parallel development and deployment,
facilitating the scaling of specific features.

2. Agility: Teams can iterate rapidly on their
respective modules, reducing time-to-market
for new features.

3. Resilience: Failures in one micro frontend
are less likely to cascade across the entire
platform.

4. Improved Developer Experience:
Developers can focus on specific areas,
reducing cognitive load and enhancing
productivity.

5. User-Centric Customization: Features can
be tailored for different user segments or
regions, supporting localized experiences.

IV. IMPLEMENTATION STRATEGIES

1. Composition Methods:

o Client-Side = Composition: Micro
frontends are stitched together
dynamically in the browser.

1. Routing:

‘ Menu 2 - /myapp/menu2 I

‘ Menu 3 - /myapp/menu3

2. IFrame:

Run-time integration via iframes

One of the simplest approaches to composing applications together in the browser is
the humble iframe. By their nature, iframes make it easy to build a page out of
independent sub-pages. They also offer a good degree of isolation in terms of styling
and global variables not interfering with each other.

<html>
<head>
<title>Feed me!</title>
</head>
<body>
<h1>Welcome to Feed me!</h1>

<iframe id="micro-frontend-container"></iframe>

<script type="text/javascript">
const microFrontendsByRoute = {

'Jorder-food':

'user-profile': 'htt|
i
const iframe = document.getElementByld('micro-frontend-container');
iframe.src = microFrontendsByRoute[window.location.pathname];
</script>
</body>
</html>

3. Micro-Apps

Contacts

Calendar

o Server-Side Composition: The server
combines micro frontends before
delivering them to the client.

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15389 | Page 2

http://www.ijsrem.com/

&%} \%

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

%:REM
w VOLUME: 06 ISSUE: 07 | JULY - 2022

SJIF RATING: 7.185 ISSN: 2582-3930

Server-side template composition

We start with a decidedly un-novel approach to frontend development - rendering
HTML on the server out of multiple templates or fragments. We have an index. htnl
which contains any common page elements, and then uses server-side includes to plug
in page-specific content from fragment HTML files:

<html lang="en" dir="ltr">
<head>
<meta charset="utf-8">
<title>Feed me</title>
</head>
<body>
<h1>!| Feed me</h1>

</body>
</html>

We serve this file using Nginx, configuring the $PAGE variable by matching against the
URL that is being requested:

server {
listen 888¢;
server_name localhost;

root /fusr/share/nginx/html;
index index.html;
ssi on;

rewrite */$ http://localhost:8088/browse redirect;

location /browse {
set $PAGE 'browse';

H

location /order {
set $PAGE 'order';

H

location /profile {

set $PAGE 'profile
}

error_page 404 /index.html;

Build-time integration

One approach that we sometimes see is to publish each micro frontend as a package,

and have the container application include them all as library dependencies. Here is
how the container's package. json might look for our example app:

{
"name": "@feed-me/container”,
"version": "1.8.8",
"description": "A food delivery web app",
“dependencies”: {
"@feed-me/browse-restaurants": "*1.2.3",
"@feed-me/order-food”: "*4.5.6",
"@feed-me/user-profile": "*7.8.9"
}
}

At first this seems to make sense. It produces a single deployable Javascript bundle, as

is usual, allowing us to de-duplicate common dependencies from our various
applications. However, this approach means that we have to re-compile and release

every single micro frontend in order to release a change to any individual part of the
product. Just as with microservices, we've seen enough pain caused by such a lockstep

4., Communication Patterns:

o Use of custom events, shared state
management libraries, and APIs for
inter-module communication.

5. Integration Technologies:

o Frameworks such as Module Federation
in Webpack, single-spa, and Tailor.js
facilitate micro frontend orchestration.

1. Single SPA - A JavaScript
framework for frontend
microservices

1. https://single-
spa.js.org/

2. Luigi - The enterprise-ready
micro- frontend framework

1. https://luigi-project.io/

3. Mooa - A independent-
deployment micro- frontend
framework for Angular from
Single SPA

1. https://github.com/phod
al/mooa

V. CHALLENGES, TRADEOFFS AND CONSIDERATIONS

While Micro Frontends offer significant benefits, they
also introduce challenges:

1. Complexity in Integration: Ensuring seamless
communication and integration between modules
requires robust orchestration mechanisms.

2. Performance Overheads: Improper
composition techniques may lead to increased
page load times.

3. Consistency in UX: Maintaining a unified look
and feel across modules developed by different
teams can be difficult.

:.1:,“:;5;:::2 lthal we would recommend strongly against this kind of approach to 4. Cross-Team Coordination: Clear
communication and governance are required to
o Edge Composition: Micro frontends are prevent silos.
composed at the CDN edge for low-
latency delivery.
© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15389 | Page 3

http://www.ijsrem.com/

&%’ ‘3 3%

[# IJSREM

o 87 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

w VOLUME: 06 ISSUE: 07 | JULY - 2022

SJIF RATING: 7.185 ISSN: 2582-3930

5. Operational Challenges: Monitoring, logging,
and troubleshooting distributed frontends can be
intricate.

VI. CASE STUDY: IMPLEMENTATION OF MICRO

FRONTENDS IN E-COMMERCE

6.1 Overview

We implemented a Micro Frontend architecture for a

6.4 Analysis

The results demonstrate significant improvements in
scalability, performance, and team productivity. By
decoupling the platform into Micro Frontends, the e-
commerce business achieved faster deployments, better
fault isolation, and improved load times.

leading e-commerce platform experiencing challenges v/|1. CONCLUSION

with monolithic frontend systems.
6.2 Modularization
The platform was broken into key business domains:
Product Search
Product Catalog
Shopping Cart
User Profile

Checkout

o M W bd e

Each domain was developed as an independent Micro
Frontend using appropriate technologies.

6.3 Results
Metric Before After
(Monolith) (Micro
Frontends)
Build Time 45 mins 10 mins
Deployment Weekly Daily
Frequency
Page Load Time 4.5 2.8 seconds
seconds
Downtime During 10 mins 0 mins
Updates

Micro frontends present a transformative approach for
scaling e-commerce platforms by addressing the
limitations of monolithic architectures. While their
adoption requires careful planning and trade-off
evaluation, the benefits in scalability, agility, and
resilience make them a compelling choice for modern e-
commerce platforms. A case study demonstrated
significant performance improvements and operational
benefits Future research could explore advancements in
tooling, standardization, and performance optimization
to enhance their adoption and efficacy.

REFERENCES

1 [1] L. Richardson and S. Ruby, Microservices
Patterns. Manning, 2018.

21 [2] M. Fowler, "Micro Frontends Architecture,"
ThoughtWorks, 2019.

8] [3] M. Lehmann, "Scaling E-commerce Systems,"
IEEE Software, vol. 34, no. 6, 2020. [4] R. Smith,
"Performance Optimization in Web Systems," ACM
Digital Library, 2021.

4] [4] A. Tangalos et al., “Micro Frontends in Practice:
Scaling Front-End Development for E-Commerce,”
in IEEE Software, vol. 37, no. 6, pp. 45-52, Nov.-
Dec. 2020.

© 2022,]JSREM | www.ijsrem.com

DOI: 10.55041/IJSREM15389 |

Page 4

http://www.ijsrem.com/

