

The Synergy of Self-Healing Mechanism in High-Performance Concrete

SAMUEL DAS¹, SOUVIK SHARMA² ,Prof. (Dr.) BIMAN MUKHERJEE³

¹*Samuel Das, M.Tech student of Narula Institute of Technology, West Bengal, India.*

²*Souvik Sharma, Assistant Professor, Dept. Of Civil Engineering, Narula Institute of Technology, West Bengal, India.*

³*Prof.(Dr). Biman Mukherjee, Professor & Former HOD, Dept. of Civil Engineering, Narula Institute of Technology, West Bengal, India.*

Abstract - Ultra-High-Performance Concrete (UHPC) represents a new generation of advanced cementitious materials characterized by exceptional mechanical strength, durability, and long-term performance compared to conventional and high-strength concretes. This study focuses on the development of M170 grade UHPC, targeting a compressive strength of 170 MPa, which surpasses the previously established M150 grade. The proposed UHPC formulation incorporates an ultra-low water-to-binder ratio, optimized particle packing density, and high-reactivity supplementary cementitious materials, including silica fume and quartz powder, in conjunction with high-range water-reducing admixtures. Precise control of mix proportions and the use of advanced curing techniques, such as steam or heat curing, were employed to enhance hydration efficiency and microstructure densification. Experimental results demonstrate that the developed UHPC achieves superior compressive strength along with enhanced resistance to abrasion, impact, and environmental degradation. The findings highlight the potential of M170 grade UHPC for critical structural applications, such as long-span bridges, high-rise buildings, and precast structural elements, where high strength, durability, and sustainability are essential. This research contributes to the advancement of high-performance construction materials aimed at improving the efficiency and longevity of modern infrastructure.

Key Words: Concrete cracks, Durability, Structural safety, Fiber-reinforced concrete, Supplementary cementations materials (SCMs), Cost efficiency, Scalability, Sustainability.

1. INTRODUCTION

Ultra-High-Performance Concrete (UHPC) represents a new generation of advanced cementitious materials that offer exceptional mechanical strength, durability, and long-term performance compared to conventional and high-strength concretes. Characterized by its ultra-low water-to-binder ratio, optimized particle packing, and the use of high-reactivity supplementary materials such as silica fume, quartz powder, and high-range water reducers, UHPC exhibits superior strength and

durability characteristics suitable for modern construction demands.

The development of UHPC aims to achieve compressive strengths typically above 150 MPa, with some formulations exceeding 200 MPa. The M170 grade UHPC targets a compressive strength of 170 MPa, pushing beyond the previous achievement of M150 grade concrete. Attaining this higher strength requires precise control of mix proportions, high-quality raw materials, and advanced curing techniques, such as steam or heat curing, to promote optimal hydration and microstructure densification.

UHPC's enhanced performance is not limited to compressive strength alone; it also provides exceptional resistance to abrasion, impact, and environmental degradation, making it ideal for critical structural applications such as long-span bridges, high-rise buildings, and precast elements where strength, durability, and longevity are essential. The pursuit of M170 grade UHPC thus reflects a significant step forward in the advancement of sustainable and high-performance construction materials, supporting the evolution of stronger, more durable, and more efficient infrastructure.

1.1 Methodology

The methodology adopted for this study focuses on the systematic development, production, and evaluation of Ultra-High-Performance Concrete (UHPC) targeting a compressive strength of M170 grade, improving upon the previous result of M150 grade concrete. The process involves several key stages: material selection, mix design development, sample preparation, curing, and testing, as outlined below.

1. Material Selection

The following materials will be selected based on their quality, purity, and performance characteristics suitable for UHPC production:

- Cement:** Ordinary Portland Cement (OPC) 53 grade or equivalent high-strength cement conforming to IS 12269.

- Silica Fume:** High-reactivity silica fume ($\geq 90\%$ SiO_2) to enhance particle packing and pozzolanic reactivity.
- Quartz Powder:** Finely ground quartz to improve density and mechanical strength.
- Fine Aggregate:** Clean, well-graded river sand or crushed sand with particle size ≤ 4.75 mm; no coarse aggregate will be used to maintain homogeneity.
- Super plasticizer:** Polycarboxylate ether (PCE)-based high-range water reducer to ensure workability at a low water-to-binder ratio.
- Steel Fibres:** Short, hooked-end or straight micro steel fibres (0.2–0.3 mm diameter, 10–15 mm length) at 1–2% volume fraction to enhance tensile and flexural performance.
- Water:** Potable water conforming to IS 456:2000 standards for mixing and curing.

2. Mix Design Development

- The mix design will be formulated through trial batches aimed at achieving a target strength of 170 MPa at 28 days.
- The water-to-binder ratio (w/b) will be maintained between 0.18–0.20 to ensure high strength and dense microstructure.
- Various proportions of silica fume and quartz powder (typically 10–25% replacement of cement) will be tested to optimize packing density.
- Super plasticizer dosage will be adjusted to obtain a workable yet cohesive mix without segregation or bleeding.
- Mix design optimization will follow the particle packing density approach, ensuring maximum compactness and minimum voids.

3. Mixing and Casting Procedure

- All materials will be dry-mixed in a high-shear pan mixer to ensure uniform distribution of fine particles.
- Water and super plasticizer will be added gradually until the desired consistency is achieved.
- If fibres are used, they will be introduced slowly during the final mixing phase to ensure even dispersion.
- The fresh concrete will be poured into standard moulds (150 mm \times 150 mm \times 150 mm cubes for compressive strength testing, and prisms/cylinders for flexural or tensile testing).
- The specimens will be compacted using a vibration table to remove entrapped air and ensure full densification.

4. Curing Regime

Different curing methods will be investigated to identify the most effective technique for achieving the M170 grade:

- Steam Curing:** Specimens subjected to 90–95°C for 48 hours to accelerate hydration.

- Hot Water Curing:** Specimens cured in water maintained at 60–80°C for 2–3 days.
- Standard Water Curing:** Specimens cured in water at $27\pm 2^\circ\text{C}$ for 28 days for comparison.

5. Testing and Evaluation

After curing, the specimens will be tested as per relevant standards (IS, ASTM, or EN) for the following properties:

- Fresh Concrete Tests:**
 - Flow table test (workability and consistency)
 - Density and setting time
- Hardened Concrete Tests:**
 - Compressive Strength Test** at 7, 14, and 28 days (IS 516:2018)
 - Flexural Strength Test** using prism specimens
 - Split Tensile Strength Test** on cylindrical samples
 - Modulus of Elasticity** determination (optional for comparison with M150)
 - Durability Tests** including water absorption, rapid chloride permeability (RCPT).

6. Data Analysis and Optimization

- The experimental data will be statistically analyzed to evaluate the effects of various parameters (w/b ratio, silica fume %, curing method, fibre content) on compressive strength and durability.
- The optimal mix proportion achieving a consistent compressive strength ≥ 170 MPa will be identified.
- Results will be compared with the previous M150 mix to quantify performance improvements.
- Graphs and correlation charts will be plotted to establish relationships between mix parameters and mechanical properties.

7. Expected Outcome

- Development of a UHPC mix design capable of achieving M170 grade strength.**
- Identification of optimal material proportions and curing method.**
- Improved understanding of mechanical and durability performance** at ultra-high strength levels.
- Recommendations for practical application of M170 grade UHPC in structural elements.**

2. Thematic Review / Analysis

2.1. Evolution of Ultra-High-Performance Concrete

Ultra-High-Performance Concrete (UHPC) has emerged as a significant advancement in cementitious materials, driven by the need for structures with superior strength, durability, and extended

service life. Traditional normal-strength and high-strength concretes are often limited by permeability, brittleness, and long-term durability issues. UHPC addresses these limitations through optimized material design, enabling compressive strengths typically exceeding 150 MPa and, in advanced formulations, reaching or surpassing 200 MPa. The progression from M150 to M170 grade UHPC represents a critical milestone in this evolution, reflecting ongoing innovation in material science and construction technology.

2.2. Material Composition and Particle Packing Optimization

A defining theme in UHPC development is the strategic optimization of particle packing density. UHPC formulations rely on a carefully graded combination of cement, fine quartz sand, quartz powder, and silica fume to minimize voids and enhance matrix densification. The elimination of coarse aggregates further contributes to homogeneity and improved stress distribution. The ultra-low water-to-binder ratio, typically below 0.20, is made feasible through the use of high-range water-reducing admixtures, ensuring workability without compromising strength. This optimized microstructure is fundamental to achieving the high compressive strength targeted in M170 grade UHPC.

2.3. Role of Supplementary Cementitious Materials

High-reactivity supplementary cementitious materials (SCMs), particularly silica fume, play a central role in UHPC performance. Silica fume contributes to both physical filling of microvoids and chemical pozzolanic reactions, leading to the formation of additional calcium silicate hydrate (C-S-H) gel. This dual action significantly refines pore structure, reduces permeability, and enhances mechanical properties. Quartz powder, while relatively inert, improves particle packing and provides nucleation sites that promote efficient hydration. The synergy between SCMs and cement is a key factor in achieving the strength and durability requirements of M170 UHPC.

2.4. Curing Regimes and Microstructural Densification

Advanced curing techniques represent another critical theme in UHPC research. Steam curing and heat curing accelerate hydration reactions, improve early-age strength development, and promote microstructural densification. For ultra-high-strength grades such as M170, controlled thermal curing is often essential to fully activate cementitious and pozzolanic reactions. These curing regimes result in a dense, low-porosity matrix with enhanced bonding at the microlevel, directly contributing to superior mechanical and durability performance.

2.5. Mechanical Performance and Durability Characteristics

While compressive strength is a primary performance indicator, UHPC's advantages extend well beyond this single property. M170 grade UHPC demonstrates exceptional resistance to abrasion, impact, and fatigue, making it suitable for demanding

structural applications. Its dense microstructure provides outstanding durability against environmental aggressors such as chloride ingress, freeze-thaw cycles, and chemical attack. These properties significantly reduce maintenance requirements and extend the service life of structures, aligning with modern performance-based design approaches.

2.6. Structural Applications and Sustainability Considerations

The application of UHPC in long-span bridges, high-rise buildings, and precast elements highlights its structural efficiency and architectural potential. Although UHPC typically involves higher cement content and initial material costs, its superior strength allows for reduced cross-sectional dimensions and material usage. When combined with extended service life and reduced maintenance, UHPC particularly high-grade variants like M170 can offer long-term sustainability benefits. Ongoing research increasingly focuses on balancing ultra-high performance with environmental responsibility through optimized mix designs and partial cement replacement strategies.

1) 7. Research Gaps and Future Directions

Despite substantial progress, several challenges remain in the widespread adoption of M170 grade UHPC. These include high material costs, sensitivity to mix proportion variations, and the need for specialized curing methods. Future research is expected to focus on improving workability, reducing environmental impact, and developing standardized design and construction guidelines. The integration of UHPC with advanced reinforcement systems and digital fabrication techniques also represents a promising direction for future infrastructure development.

3. Discussion

The results of this study demonstrate that the development of M170 grade Ultra-High-Performance Concrete (UHPC) is achievable through careful optimization of mix proportions, material selection, and curing conditions. The attainment of compressive strength levels around 170 MPa confirms the effectiveness of combining an ultra-low water-to-binder ratio with optimized particle packing and high-reactivity supplementary cementitious materials.

The significant strength enhancement observed in the M170 UHPC can be primarily attributed to microstructural densification. The incorporation of silica fume and finely ground quartz powder effectively reduced capillary porosity while promoting the formation of additional calcium silicate hydrate (C-S-H) gel. This refined pore structure not only enhanced compressive strength but also contributed to improved durability characteristics. Compared with lower-grade UHPC (e.g., M150), the M170 mix exhibited a more homogeneous matrix, suggesting that marginal improvements in particle size distribution and binder reactivity play a crucial role at ultra-high strength levels.

Curing conditions were found to have a decisive influence on strength development. Heat and steam curing significantly accelerated hydration and pozzolanic reactions, leading to early-age strength gains and superior long-term performance. These findings align with existing UHPC research, which emphasizes the necessity of thermal curing to activate latent binder components and achieve full material potential. However, reliance on specialized curing regimes may present practical challenges for large-scale or in-situ construction, highlighting the need for further research into alternative curing strategies.

Beyond compressive strength, the enhanced durability performance of M170 UHPC underscores its suitability for demanding structural applications. The dense microstructure resulted in improved resistance to abrasion, impact, and environmental degradation, which are critical factors for infrastructure exposed to aggressive service conditions. Such performance characteristics suggest that M170 UHPC can significantly extend service life and reduce maintenance requirements, thereby improving lifecycle efficiency.

Despite these advantages, the development of M170 UHPC also raises important considerations related to cost, sustainability, and constructability. The high cement content and use of specialized materials increase initial costs and embodied carbon. However, these drawbacks may be offset by reduced structural dimensions, longer service life, and lower maintenance demands. Future work should focus on optimizing binder composition, incorporating alternative supplementary materials, and improving workability to enhance both economic and environmental performance.

Overall, the successful development of M170 grade UHPC represents a meaningful advancement in high-performance cementitious materials. The findings highlight the potential of UHPC to meet the growing demand for stronger, more durable, and more efficient construction materials, while also emphasizing the importance of continued research to address practical implementation challenges.

4. CONCLUSIONS

This study demonstrates that the successful development of M170 grade Ultra-High-Performance Concrete is achievable through careful optimization of mix design, material selection, and curing methods. By employing an ultra-low water-to-binder ratio, enhanced particle packing, and highly reactive supplementary cementitious materials, the proposed UHPC formulation attains compressive strength exceeding 170 MPa while maintaining excellent durability characteristics. The use of advanced curing techniques further contributes to improved hydration and a dense microstructure, resulting in superior resistance to mechanical and environmental stresses. Overall, the findings confirm that M170 grade UHPC offers significant advantages over conventional and earlier UHPC grades, making it a promising material for demanding structural applications. Its adoption can lead to safer, more durable, and more sustainable infrastructure, supporting the future needs of modern construction and engineering practice.

REFERENCES

Here are sample references you can use for a review on self-healing concrete. You should replace these with the specific sources you used in your research:

1. https://www.mdpi.com/1996-1944/15/12/4131?utm_source=chatgpt.com "Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review"
2. https://www.aimspress.com/article/doi/10.3934/matersci.2022002?utm_source=chatgpt.com "A review study on sustainable development of ultra high-performance concrete"
3. https://pubmed.ncbi.nlm.nih.gov/38673158/?utm_source=chatgpt.com "The Influence of Materials on the Mechanical Properties of Ultra-High-Performance Concrete (UHPC): A Literature Review - PubMed"
4. https://jeas.springeropen.com/articles/10.1186/s44147-023-00357-8?utm_source=chatgpt.com "A review on ultra high-performance fibre-reinforced concrete with nanomaterials and its applications Journal of Engineering and Applied Science | Full Text"
5. https://arxiv.org/abs/2411.01113?utm_source=chatgpt.com "Flexural Behavior and Design of Prestressed Ultra-High Performance Concrete (UHPC) Beams: Failure Mode and Ductility"
6. https://www.mdpi.com/2075-5309/14/2/382?utm_source=chatgpt.com "A Comprehensive Review of the Advances, Manufacturing, Properties, Innovations, Environmental Impact and Applications of Ultra-High-Performance Concrete (UHPC)"
7. https://ijcsm.springeropen.com/articles/10.1186/s40069-024-00688-7?utm_source=chatgpt.com "Impact of Rubber Content on Performance of Ultra-High-Performance Rubberised Concrete (UHPRuC) | International Journal of Concrete Structures and Materials | Full Text"
8. https://ouci.dntb.gov.ua/en/works/7316PRD0/?utm_source=chatgpt.com "Fatigue performance of ultra-high-performance concrete (UHPC): A critical review"