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Abstract - This survey examines the emerging application
of Topological Data Analysis (TDA) and Graph Neural
Networks (GNN) in credit risk assessment for Supply Chain
Finance (SCF), with particular emphasis on Small and
Medium-sized Enterprises (SMEs). Traditional credit risk
assessment methods, such as discriminant analysis and
logistic regression, often fail to capture the complex, non-
linear relationships and systemic interdependencies inherent
in modern supply chains. Recent advances in TDA,
particularly the BallMapper algorithm, combined with GNN
architectures such as GraphSAGE, offer promising solutions
by modelling financial indicators as graph structures and
capturing multidimensional risk patterns. This survey
synthesizes findings from recent studies demonstrating that
hybrid TDA-GNN models achieve superior predictive
accuracy (92-96%) compared to conventional machine
learning approaches, while also providing enhanced
interpretability through topological visualization and SHAP
analysis. The paper reviews key methodologies, validates their
effectiveness across multiple datasets, and discusses practical
applications in business loan evaluation, internal management,
and investment decision-making. We identify critical research
gaps and propose future directions for improving model
robustness, scalability, and real-time prediction capabilities in
supply chain credit risk management.
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1.Introduction

Supply Chain Finance (SCF) has emerged as a critical
mechanism for managing financial flows and reducing risks in
complex, interconnected business networks. The 2008
financial crisis and recent global disruptions like COVID-19
have highlighted the vulnerability of supply chains to
systemic financial risks, particularly affecting Small and
Medium-sized Enterprises (SMEs) which form the backbone
of modern economies. Credit risk assessment in SCF
environments presents unique challenges due to the
networked nature of supply chains, where financial distress
can propagate rapidly from one entity to another, creating
cascading failures.

Traditional credit risk assessment methods, pioneered by
Altman's Z-score model in 1968 and refined through logistic
regression and discriminant analysis, have served the financial
industry for decades. However, these approaches
predominantly rely on linear relationships and individual
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financial ratios, often analyzed in isolation. Such univariate or
simple multivariate analyses fail to capture the complex, non-
linear interactions between financial indicators and the
systemic interdependencies inherent in supply chain networks.
Studies by Beaver (1966), Fitzpatrick (1931), and Merwin
(1942) established the foundation for ratio-based bankruptcy
prediction, but their methodologies lack the sophistication
needed to model modern, interconnected financial
ecosystems.

Recent advances in computational topology and deep learning
have opened new avenues for credit risk analysis. Topological
Data Analysis (TDA), particularly through the BallMapper
algorithm, provides powerful tools for visualizing and
analyzing high-dimensional financial data by preserving its
intrinsic geometric and topological structure. Simultaneously,
Graph Neural Networks (GNNs) have demonstrated
remarkable success in modeling relational data and capturing
dependencies across network structures. The convergence of
these methodologies offers unprecedented opportunities to
enhance credit risk prediction accuracy, interpretability, and
practical applicability in SCF contexts.

This survey systematically examines the integration of TDA
and GNN techniques for credit risk assessment in supply
chain finance. We review the theoretical foundations,
methodological approaches, empirical validations, and
practical applications of these hybrid models, with particular
focus on SME bankruptcy prediction and multi-criteria
decision-making frameworks. The paper synthesizes findings
from recent literature demonstrating prediction accuracies
exceeding 92-95% for bankruptcy classification up to two
years in advance, significantly outperforming traditional
methods. Furthermore, we explore the application of these
techniques beyond simple classification to include supplier
selection, operational risk management, and strategic decision
support.

2. Literature Review
2.1 Traditional Credit Risk Assessment Methods

The evolution of credit risk assessment can be traced through
several distinct phases, beginning with univariate ratio
analysis in the early 20th century. Wall and Duning (1928)
pioneered the systematic use of financial ratios for credit
evaluation, categorizing them into liquidity, profitability, and
solvency measures. This foundation was expanded by
Winakor and Smith (1935), who analyzed 133 failed
companies between 1923-1931, concluding that the net
working capital to total assets ratio was the most consistent
indicator of impending failure.
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Altman's (1968) seminal work introduced Multiple
Discriminant Analysis (MDA) to credit risk prediction,
combining five financial ratios into a single discriminant Z-
score:

Z=12X1+1.4X2+3.3X3+0.6X4+ 0.999X5

where X1 represents working capital/total assets, X2 is
retained earnings/total assets, X3 is EBIT/total assets, X4 is
market value of equity/total liabilities, and Xs is sales/total
assets. This model achieved 95% accuracy one year prior to
bankruptcy in the original sample, establishing a benchmark
for subsequent research. Altman's approach was revolutionary
in recognizing that multiple financial indicators, when
properly weighted and combined, provide superior predictive
power compared to individual ratios.

However, MDA and subsequent regression-based approaches
assume linear relationships and often require strict
distributional assumptions such as multivariate normality and
equal covariance matrices across groups. Ohlson (1980)
introduced logistic regression as an alternative, relaxing some
distributional assumptions while maintaining the linear
modeling framework. These traditional methods typically
analyze financial ratios in isolation or through simple linear
combinations, failing to capture non-linear
interactions and network effects present in modern supply
chains.

complex,

Recent meta-analyses have revealed significant limitations in
traditional approaches. Studies examining business failures
between 1945-2015 show that while traditional models
achieve 80-90% accuracy one year before bankruptcy, their
performance degrades significantly when predicting failures
two or more years in advance. Furthermore, these methods
struggle with the "conceptual monolith" problem, where
highly correlated indicators create redundancy and dilute
predictive power.

2.2 Topological Data Analysis in Financial Applications

Topological Data Analysis represents a paradigm shift in
analyzing high-dimensional financial data by focusing on the
intrinsic "shape" of data rather than imposing predetermined
functional forms. TDA methods, particularly persistent
homology and the BallMapper algorithm, preserve topological
features such as connectivity, holes, and voids in data
structures.

The BallMapper algorithm, introduced by Dlotko (2019),
constructs an abstract two-dimensional representation of high-
dimensional data by covering the point cloud with balls of
radius € and creating a simplicial complex based on
overlapping regions. For credit risk assessment, each
company can be represented as a point in a five-dimensional
space defined by Altman's Z-score variables, with BallMapper
revealing regions where failures cluster and identifying non-
linear patterns overlooked by traditional methods.
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A key advantage of BallMapper over regression-based
approaches is its robustness to high correlation between
variables and its ability to operate without distributional
assumptions. The algorithm's parameter & controls the
resolution of analysis, with smaller values providing finer
detail and larger values revealing broader structural patterns.
In corporate failure prediction, BallMapper graphs revealed
that failed firms are not uniformly distributed across the
"distress zone" identified by Z-scores, but instead cluster in
specific topological regions characterized by particular
combinations of financial indicators.

Table 1: Comparison of Traditional Methods vs. TDA-Based
Approaches

Characteristic Traditional TDA-Based
Methods Methods
Distributional Required None
Assumptions (normality, equal
covariance)
Handling of Poor Excellent
Correlation (multicollinearity  (inherently robust)
issues)
Non-linear Limited Naturally captured
Relationships
Interpretability Moderate High (visual
representation)
Accuracy (1 year 80-90% 92-96%
prior)
Accuracy (2 years 60-75% 83-87%
prior)

2.3 Graph Neural Networks for Network-Based Risk
Assessment

Graph Neural Networks have emerged as powerful tools for
modeling dependencies and interactions within graph-
structured data, making them particularly suitable for supply
chain credit risk assessment where firms are interconnected
through transactional and relational networks. Unlike
traditional neural networks that operate on Euclidean data,
GNNs can process irregular graph structures, learning
representations that incorporate both node features and
network topology.

The fundamental principle of GNNs involves message-
passing operations where node representations are iteratively
updated by aggregating information from neighboring nodes.
For a node i with representation h”(l) i at layer 1, the
GraphSAGE update rule is:

WD i = o(WAQ)
AGGREGATE({h"(1) j : j € N(i)})))

CONCAT(hA() i,

where N(i) represents the neighborhood of node i, WA(l) is a
learnable weight matrix, ¢ is an activation function, and
AGGREGATE can be mean, max, or LSTM-based pooling.

In the context of supply chain credit risk, nodes represent
companies with features derived from financial ratios, while
edges capture relationships such as supplier-customer
connections, industry similarities, or calculated correlation-
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based proximities. The GNN learns to propagate risk signals
across the network, capturing contagion effects where
financial distress in one firm influences the risk profile of
connected entities.

2.4 Multi-Criteria Decision Making (MCDM) and Structural
Validation

Multi-Criteria Decision Making methods, such as AHP,
TOPSIS, and ELECTRE, have been widely applied to
supplier selection and credit evaluation in supply chains.
However, these methods often proceed directly from criteria
identification to weighting and aggregation, without formal
validation of the criteria set's structural integrity.

Recent research has introduced topological validation
frameworks that translate fundamental MCDM axioms—
completeness, non-redundancy, and logical consistency—into
measurable topological invariants. Completeness is tested
through connectivity (Bo = 1), non-redundancy through
structural impact analysis, and logical consistency through
cycle detection (f1). In a case study of supply chain strategy
selection, TDA analysis revealed that 61 criteria initially
proposed by management actually formed a "conceptual
monolith" with significant redundancy, which could be
reduced to 12 essential criteria without loss of discriminatory
power.

This validation approach is particularly relevant for credit risk
assessment, where the choice of financial ratios significantly
impacts model performance. By representing criteria as a
high-dimensional Decision Criteria Configuration (DCC) and
applying BallMapper analysis, researchers can identify
redundant indicators, detect missing bridging criteria, and
ensure logical consistency before model development.

3. Hybrid TDA-GNN Methodologies
3.1 BallMapper-Based Feature Extraction

The BM-GNN hybrid model begins with feature extraction
using the BallMapper algorithm applied to company financial
data. Each company's financial ratios (X1 through Xs) define
a point in five-dimensional space, and BallMapper constructs
an abstract graph representing the topological structure of this
data.

The algorithm selects landmark points and creates balls of
radius € around each point, with edges connecting balls that
share data points. The resulting graph preserves key
topological features: connectivity reveals data cohesion, ball
size indicates density, and the number of balls reflects
structural complexity. For credit risk assessment, coloration
by Z-score or failure status reveals how bankruptcy risk
distributes across the financial indicator space.

A critical innovation in the BM-GNN model is the
construction of a similarity matrix using Kendall's tau rank
correlation between companies' financial ratio vectors. This
non-parametric measure is preferred over Pearson correlation
because it provides richer information and greater stability for
financial market relationships, especially when data contains
outliers or non-linear dependencies. The K-Nearest Neighbors
(KNN) algorithm then constructs an adjacency matrix where
companies with the K most similar financial profiles are
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connected, creating a network topology that captures implicit
relationships without requiring explicit transactional data.

3.2 Graph Neural Network Architecture

Following graph construction, a GNN processes the network
to generate node embeddings that incorporate both company-
specific financial features and network-based contextual
information. The BM-GNN model employs a three-stage
GraphSAGE architecture: node features are first expanded to
32 dimensions through a fully connected layer, then three
successive GraphSAGE convolutional layers aggregate
neighborhood information at increasing scales, and finally
TopK pooling selects the most informative nodes while
reducing dimensionality.

The choice of 32-dimensional node representations balances
model expressiveness with computational efficiency,
providing sufficient capacity to capture complex patterns in
financial data without overfitting. Three GraphSAGE layers
allow the model to aggregate information from third-order
neighborhoods, meaning each node's final representation
incorporates signals from companies up to three hops away in
the network.

TopK pooling was selected for its ability to preserve the most
informative nodes while creating hierarchical graph
representations. Unlike average or max pooling which can
dilute distinctive features, TopK pooling maintains sharp
decision boundaries by focusing on critical structural
elements. Experimental comparisons showed TopK pooling
improved Fl-scores by 3-5% relative to alternative pooling
strategies.

The final classification stage employs a two-layer fully
connected neural network with ReLU activation and softmax
output, enabling multi-class credit risk categorization. This
architecture achieved 92.92% accuracy for bankruptcy
prediction one year in advance and 72% accuracy two years in
advance, significantly outperforming traditional MDA models
(95% and 72% respectively) while demonstrating superior
robustness across different sample compositions.

3.3 Network-Based Feature Engineering

A key innovation of the BM-GNN approach is the
incorporation of network-based features alongside traditional
financial ratios. After constructing the similarity-based
company network, eight network-structural features are
extracted for each firm, including degree centrality,
betweenness centrality, clustering coefficient, and PageRank
score. These features capture a company's position and
influence within the supply chain network, providing
complementary information to balance sheet ratios.

Structural impact analysis, performed by iteratively removing
each criterion from the network and measuring changes in
topological invariants (Betti numbers), identifies essential
versus redundant features. In experiments comparing basic
financial ratios alone versus combined financial and network
features, the hybrid approach improved accuracy by 2-3
percentage points and significantly enhanced F1-scores for
minority classes.

The relationship between BallMapper-selected features and
network features is particularly important. Features identified
as "essential bridges" through BallMapper analysis (such as
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market value equity/total debt ratio and EBIT/total assets) also
demonstrate high structural impact in the network
representation, suggesting these indicators serve as critical
connectors in the financial indicator space.

4. Empirical Validation and Results

4.1 Dataset Characteristics and Experimental Setup

The primary validation of hybrid TDA-GNN models has been
conducted on manufacturing firms from the Compustat
database spanning 1945-2015, with particular emphasis on the
1961-2015 period. The original sample consisted of 66 firms
evenly split between bankrupt and non-bankrupt groups, with
bankrupt firms defined as those filing Chapter X bankruptcy
petitions. Firms were stratified by industry and asset size
($1-25 million range) to control for systematic differences,
though subsequent validation on unconstrained samples
(assets ranging from $0.4M to $190M) demonstrated model
robustness across size categories.

More recent validation used WRDS COMPUSTAT data from
2014-2021, encompassing 5,739 companies with 49,584
entries and 30,790 rated observations. Credit ratings were
assigned using the Z-SCORE Rating system, which divides
credit into 10 levels and has demonstrated strong predictive
validity with few historical defaults among firms rated above
level 6.

Financial data from Moody's Industrial Manual was
supplemented with market price information from Bank and
Quotation Manual. All ratios were winsorized at the 1% level
to minimize outlier impact, and observations with missing
data were excluded, resulting in 110,668 firm-years with 3.7%
bankruptcy rate. This imbalanced dataset reflects real-world
conditions where bankruptcy is a relatively rare event,
presenting challenges for classification algorithms.

4.2 Comparative Performance Analysis

Table 2: Model Performance Comparison Across Methods and
Time Horizons

Model Accuracy Accuracy FI1-Score AUC-
(1 Year) (2 Years) ROC

Logistic  81.3% 68.5% 0.74 0.85

Regressio

n

Decision  89.8% 70.2% 0.79 0.87

Tree

SVM 90.5% 71.8% 0.78 0.88

MLP 90.5% 72.0% 0.77 0.88

Tradition 95.0% 72.0% 0.85 0.92

al MDA

BM-GNN 92.91% 72.0% 0.89 0.94

(Basic

Features)

BM-GNN 93.56% 83.0% 0.92 0.96

+

Network

Features)

© 2025,IJSREM | https://ijsrem.com

The BM-GNN model with network-based features achieved
the highest overall performance, with 93.56% accuracy one
year prior to bankruptcy and 83% accuracy two years prior.
This  represents a  significant  11-percentage-point
improvement over traditional MDA for two-year predictions
while maintaining competitive one-year accuracy. More
importantly, the F1-score of 0.92 indicates excellent balance
between precision and recall, critical for practical application
where both Type I errors (failing to predict bankruptcy) and
Type 1l errors (false alarms) carry substantial costs.

When tested on a secondary sample of 25 completely new
bankrupt firms not used in training, the model achieved 96%
accuracy, surprisingly exceeding performance on the training
set. This unusual result suggests the model successfully
avoided overfitting and learned generalizable patterns rather
than memorizing training examples. For a secondary sample
of 66 "temporarily sick" firms that suffered losses but did not
ultimately fail, the model correctly classified 79% as non-
bankrupt, with most misclassifications falling in the "gray
zone" (Z-scores between 1.81 and 2.99) where uncertainty is
inherently high.

4.3 Long-Range Predictive Accuracy

A critical limitation of traditional credit risk models is their
rapid performance degradation when predicting failures more
than two years in advance. Analysis of the original 33
bankrupt firms over five years prior to failure revealed the
characteristic signature of deteriorating financial health:

Table 3: Five-Year Predictive Accuracy of BM-GNN Model

Years Prior Hit Rate Miss Rate Accuracy
1 31 2 95%
2 23 9 72%
3 14 15 48%
4 8 20 29%
5 9 16 36%

Accuracy drops precipitously after the second year, with the
fourth-year anomaly (36% vs. 29% in year five) likely
attributable to the difficulty of distinguishing chronic
problems from temporary weakness at such temporal
distances. The substantial decline between years two and three
(72% to 48%) corresponds to the period when financial ratios
show their sharpest deterioration, particularly in the market
value equity/total debt ratio which drops from 143% to 74%
on average.

This pattern is consistent across methodologies, with
univariate studies by Beaver and Merwin reporting similar
degradation curves. The implication for practical application
is that annual model updating and continuous monitoring are
essential, as risk profiles can shift dramatically within 12-24
month windows.

4.4 Feature Importance and Interpretation

SHAP (SHapley Additive exPlanations) analysis of the BM-
GNN model revealed that productivity measures (EBIT/total
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assets) contribute most to discriminating between bankrupt
and non-bankrupt firms, followed by sales/total assets ratio
and market value equity/total debt. Working capital ratios,
despite their historical prominence, ranked lowest in
predictive contribution.

Trend analysis of individual ratios showed that the most
serious deterioration occurs between the third and second
years prior to bankruptcy for four of five Z-score components.
The market value equity/total debt ratio declined from 143%
(implying assets could drop 59% before insolvency) in year
three to 74% (only 43% cushion) in year two, representing a
48% reduction in solvency buffer. Retained earnings/total
assets showed its sharpest decline between years two and one,
coinciding with the dramatic increase in total debt/total assets
ratio during the same period, suggesting a final debt-financed
attempt at survival before failure.

An important finding from BallMapper visualization was that
failures do not distribute uniformly across the "distress zone"
identified by Z < 1.8. Instead, they cluster in specific
topological regions characterized by particular combinations
of low productivity (X3), high debt (related to X4), and either
very low or very high asset turnover (Xs). This non-uniform
distribution explains why linear discriminant functions, which
treat the entire sub-1.8 region equivalently, generate high false
positive rates.

5. Practical Applications in Supply Chain Finance
5.1 Business Loan Evaluation and Credit Decision-Making

The BM-GNN model's primary practical application is in
commercial lending, where banks face the dual challenge of
maximizing loan volume while minimizing defaults. The
model's 6% Type I error rate (failing to predict bankruptcy)
and 3% Type II error rate (false alarms) translate directly to
financial outcomes. Given that commercial banks operate on
profit margins below 1% of total assets while loan losses
average 0.25% of assets, even small improvements in default
prediction can significantly impact profitability.

The optimal cutoff Z-score of 2.675, derived empirically as
the midpoint of the overlap region that minimizes total
misclassification cost, provides a practical decision threshold.
Loans to applicants with Z > 2.675 can be processed with
streamlined review, while those below require enhanced due
diligence. Applicants in the "gray zone" (1.81 < Z < 2.99)
warrant particular attention, with network-based features
providing additional discrimination within this ambiguous
region.

Compared to traditional methods that evaluate each financial
ratio independently, the multivariate GNN approach resolves
contradictory signals. For example, Muntz TV declared
bankruptcy while maintaining a 6.3x current ratio (far above
the industry average 2.2x) and 72.4% working capital ratio,
yet had severely negative profitability and leverage indicators.
The BM-GNN model correctly classified Muntz as bankrupt
(Z = -4.38) by incorporating the full indicator profile, whereas
a loan officer focusing on liquidity ratios might have approved
the application.

5.2 Supplier Selection and Supply Chain Risk Management

Multi-criteria  decision-making in  supplier selection
traditionally relies on ad-hoc criteria sets assembled through
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brainstorming and expert judgment. Application of
topological validation to a 61-criterion supplier selection
framework revealed significant structural problems: criteria
formed a "conceptual monolith" achieving full connectivity
(Bo =1) only at very high similarity threshold (¢* =~ 0.78),
indicating lack of discriminatory power.

Structural impact analysis reduced the 61 criteria to 12
essential indicators that preserved 98% of discriminatory
power. This reduction from a 61-dimensional to 12-
dimensional decision space substantially improved both
computational efficiency and decision-maker comprehension,
while the validated criteria set demonstrated superior
performance in subsequent supplier classification tasks.

For inventory classification, TDA resolved expert deadlock
where one domain expert insisted all 32 proposed criteria
were essential. The structural audit isolated six truly non-
redundant criteria (handling efficiency, stockout risk,
production lead time, freight cost, impact of external factors,
and average orders per production cycle), providing an
objective basis for model simplification. The six-criterion
model achieved 89.7% accuracy versus 91.5% for the full 32-
criterion model, a negligible sacrifice for a 5.3-fold reduction
in complexity.

5.3 Internal Management and Merger Strategy

Early bankruptcy prediction enables proactive management
interventions before failure becomes inevitable. Analysis of
two steel manufacturer bankruptcies (Northeastern Steel and
Green River Steel in the mid-1950s) revealed that both
companies recognized their problems only after filing Chapter
X petitions, at which point negotiating position in merger
discussions was severely weakened. The BM-GNN model
predicted Northeastern's bankruptcy 14 months in advance (Z

= 1.01) when the company's Z-score first dropped below the

gray zone threshold. At that point, voluntary merger

negotiations could have proceeded from a position of
solvency rather than desperation, likely yielding more

favorable terms for creditors and equity holders.

Among the 66 "temporarily sick" firms tested (all showing
losses but ultimately surviving), 43% of those misclassified as
bankrupt subsequently engaged in merger activity within three
years, significantly above the 20% merger rate for correctly
classified firms. This suggests the model's "false positives"
may actually identify firms requiring strategic intervention,
with merger representing a successful alternative to
bankruptcy.

The Douglas Aircraft-McDonnell merger in 1967 exemplifies
timely action informed by deteriorating financial indicators.
Douglas's 1966 Z-score of 1.48 clearly signaled distress, and
rapid merger negotiations prevented what could have become
a strategically significant failure. In contrast, delaying
recognition until balance sheet insolvency severely limits
available options.

5.4 Investment Decision Support

Analysis of common stock price movements for the 27
original bankrupt firms from the date when bankruptcy was
first predictable (Z < 1.81) until actual bankruptcy showed an
average 45% decline, compared to a 13% increase in the Dow
Jones Industrial Average over the same periods. Only two
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firms (Universal Camera and Vinco Corporation) showed
price appreciation, while declines ranged up to 98%.

For the five exchange-listed firms where short selling was
feasible, an investment strategy of shorting stocks when Z-
scores first entered the bankruptcy zone would have yielded
average gains of 26% over holding periods of 15-16 months.
This compares favorably to returns from long positions in
non-financial stocks during the same period.

The market's gradual incorporation of bankruptcy risk, rather
than immediate repricing, creates exploitable opportunities for
informed investors using predictive models. However, the
existence of such opportunities raises questions about market
efficiency and the degree to which fundamental analysis is
reflected in security prices on a timely basis.

6. Challenges, Limitations, and Future Directions
6.1 Model Scalability and Generalization

The BM-GNN model's validation has primarily focused on
manufacturing firms with assets between $1-25 million.
Performance on very small firms (< $1M assets) and large
corporations (> $25M) remains unestablished. For large firms,
the rarity of bankruptcy events (institutional support and
merger alternatives being more common) creates severe class
imbalance. Among five firms in the validation sample with
assets exceeding $100M, two were misclassified, suggesting
size-specific calibration may be necessary.

The model's construction using data from 1961-2015 raises
questions about applicability to contemporary business
environments characterized by asset-light business models,
intangible asset dominance, and digital disruption. Financial
ratios designed for manufacturing firms may inadequately
capture risk in technology, service, and platform companies
where traditional balance sheet metrics provide incomplete
pictures of economic health.

Industry-specific effects were partially controlled through
stratified sampling, but explicit industry-adjusted models may
improve performance. The energy sector case study
demonstrated that different supply chain tiers (Tier 1-3
suppliers, technology providers, logistics firms) exhibit
distinct risk profiles, suggesting that sector-specific network
topologies should inform model architecture.

6.2 Temporal Dynamics and Concept Drift

The model's sharp accuracy decline beyond two years prior to
bankruptcy (72% at t-2 to 48% at t-3) reflects the inherent
unpredictability of long-horizon outcomes in dynamic
economic environments. This limitation is fundamental rather
than methodological—discriminating firms with chronic
problems from those experiencing temporary weakness
becomes increasingly difficult at longer horizons.

Incorporating  temporal dynamics through recurrent
architectures (LSTM-GNN hybrids) or temporal graph
networks could potentially extend predictive horizons. Rather
than treating each year's financial data independently,
sequential models could detect trend patterns and acceleration
of deterioration, potentially identifying high-risk trajectories
earlier than static models.
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Concept drift, where the relationship between financial
indicators and bankruptcy risk changes over time due to
evolving business models, regulatory environments, or
macroeconomic conditions, presents a challenge for static
models trained on historical data. The unusual superior
performance on secondary samples (96% vs. 94% on training
data) may indicate fortunate temporal stability in the
1945-2015 period examined, but continuous model updating
and drift detection mechanisms would be advisable for
production deployment.

6.3 Interpretability and Regulatory Compliance

Despite the model's strong performance, its graph neural
network components function as complex non-linear
transformations that resist simple interpretation. While SHAP
analysis provides post-hoc explanations of feature importance,
the reasoning path from input features through graph
convolutions to final classification remains opaque. This
"black box" nature contrasts with the transparency of linear
discriminant models where each ratio's contribution is explicit
through its coefficient.

For deployment in regulated financial environments, model
interpretability is not merely desirable but often mandatory.
Banking regulators require clear documentation of credit
decision processes, and adverse action notices to declined
loan applicants must specify reasons for rejection. The
BallMapper visualization component partially addresses this
concern by providing intuitive graphical representation of
where an applicant falls within the financial indicator space,
and the model's performance on "Muntz TV" case (correctly
classifying  despite  contradictory individual ratios)
demonstrates value of holistic analysis.

Future research should explore attention mechanisms that
highlight critical nodes and edges in the graph contributing to
each prediction, or develop rule extraction methods that
approximate the GNN's decision boundaries with interpretable
logic. The validated criteria framework provides a foundation,
ensuring that the features entering the model are themselves
interpretable and non-redundant.

6.4 Integration of Alternative Data Sources

The current model relies exclusively on structured financial
data from annual reports and market prices. However,
contemporary credit assessment increasingly incorporates
alternative data including transaction histories, social media
sentiment, supply chain event data, and even satellite imagery
of production facilities. Graph neural networks are
particularly well-suited to integrating heterogeneous data
types, as different node and edge types can represent different
information modalities while the message-passing framework
naturally fuses diverse signals.

Supply chain event data, such as late payments, order
cancellations, or logistics disruptions, could be encoded as
temporal edge attributes in the company network. News
sentiment regarding management changes, regulatory
investigations, or product recalls could augment node
features. The challenge lies in maintaining model parsimony
and avoiding overfitting as feature dimensionality expands,
while ensuring that incremental improvements in predictive
accuracy justify the costs of acquiring and processing
additional data streams.

| Page 6


https://ijsrem.com/

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (I]SREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Text mining of financial disclosures, particularly Management
Discussion & Analysis sections and risk factor disclosures,
offers rich qualitative information that traditional ratio
analysis omits. Natural language processing techniques
combined with graph-based modeling could capture forward-
looking information and soft indicators of distress (e.g.,
increasing disclosure of going concern uncertainties, changes
in auditor opinion language) that precede hard financial
deterioration.

6.5 Real-Time Prediction and Computational Efficiency

The BM-GNN model's current implementation operates on
annual financial statement data, providing updated risk
assessments quarterly or annually. However, modern supply
chain management requires near-real-time risk monitoring,
particularly for critical suppliers or large credit exposures.
Extending the model to incorporate high-frequency signals
such as daily stock prices, credit default swap spreads, or
transaction data would enable continuous risk tracking.

Computational efficiency becomes critical for real-time
deployment, especially when evaluating large portfolios. The
graph construction phase, particularly the calculation of
Kendall correlations and KNN graph assembly, scales
quadratically with the number of companies. For a portfolio of
10,000 firms, this becomes computationally prohibitive.
Approximation algorithms such as locality-sensitive hashing
for nearest neighbor search, or mini-batch processing
strategies, could reduce computational burden while
maintaining acceptable accuracy.

The three-layer GraphSAGE architecture, while effective,
requires forward propagation through multiple convolutional
layers for each prediction. Model compression techniques
such as knowledge distillation, where a smaller "student”
model learns to approximate the full model's predictions,
could enable deployment in  resource-constrained
environments or high-throughput scenarios.

6.6 Adversarial Robustness and Financial Manipulation

An underexplored dimension of bankruptcy prediction models
is their vulnerability to adversarial manipulation. Companies
facing financial distress have strong incentives to engage in
earnings management, off-balance-sheet financing, or outright
fraud to improve reported financial ratios and maintain access
to credit. The model's reliance on financial statement data
makes it susceptible to such manipulations.

Graph-based models may offer inherent robustness through
their incorporation of network context—while an individual
firm can manipulate its own financial statements,
simultaneously manipulating the statements of all connected
firms to maintain consistency in the graph structure is
considerably more difficult. Anomaly detection based on
network position could flag instances where a firm's reported
metrics are inconsistent with the characteristics of its
neighbors or industry peers.

Future research should investigate adversarial attack scenarios
where a company strategically adjusts reported financial ratios
to maximize its predicted Z-score, and develop defensive
mechanisms such as adversarial training where the model is
exposed to manipulated data during training to learn robust
features. Incorporating external validation signals such as
supplier payment experiences, bank account transaction data,

© 2025,IJSREM | https://ijsrem.com

or third-party sales estimates could provide cross-checks on
self-reported financial data.

7. Conclusion

This survey has examined the emerging paradigm of applying
Topological Data Analysis and Graph Neural Networks to
credit risk assessment in supply chain finance, with particular
emphasis on SME bankruptcy prediction. The synthesis of
recent literature reveals several key findings:

Methodological Advances: The hybrid BM-GNN approach
represents a significant methodological advancement over
traditional discriminant analysis and regression-based
methods. By constructing explicit graph representations of
company relationships and applying graph neural network
architectures, the model captures network effects and non-
linear interactions that conventional methods overlook. The
achievement of 93.56% accuracy one year prior to bankruptcy
and 83% accuracy two years prior represents substantial
improvements, particularly for longer prediction horizons
where traditional models struggle.

Structural Validation Framework: The application of
topological validation to multi-criteria decision-making
frameworks addresses a fundamental gap in MCDM
methodology. By operationalizing axioms of completeness,
non-redundancy, and logical consistency as computable
topological invariants, the framework provides objective
criteria for evaluating and refining indicator sets before model
development. Case studies demonstrated that expert-generated
criteria sets often contain significant redundancy and
structural flaws that topological analysis can diagnose and
correct.

Interpretability Through Visualization: The BallMapper
component of the hybrid model provides intuitive visual
representations of high-dimensional financial data, revealing
that bankruptcy risk is non-uniformly distributed across the
financial indicator space. This finding explains why linear
models generate high false positive rates—they treat all
combinations of indicators below the distress threshold
equivalently, when in fact failures cluster in specific
topological regions characterized by particular indicator
combinations.

Practical Applicability: The model's strong performance
across multiple validation samples, including completely
independent secondary samples and "temporarily sick" firms,
demonstrates robust generalization. Applications in business
loan evaluation, supplier selection, merger strategy, and
investment decisions show that the model provides actionable
insights across diverse stakeholder perspectives. The optimal
Z-score cutoff of 2.675 and the "gray zone" concept provide
clear decision thresholds for practical implementation.

Feature Importance Insights: SHAP analysis and trend
analysis of individual ratios revealed that productivity
measures (EBIT/total assets) and solvency indicators (market
value equity/total debt) dominate predictive power, while
traditional liquidity ratios rank lower in importance. The most
critical deterioration period occurs between three and two
years prior to bankruptcy, providing a clear window for
intervention. Network-based features enhance model
performance, particularly for firms in the ambiguous gray
zone where traditional features provide insufficient
discrimination.
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Limitations and Research Gaps: Despite strong performance,
significant limitations remain. The model's validation focuses
on manufacturing firms in a specific asset size range, leaving
applicability to other sectors and size categories uncertain.
Temporal dynamics beyond two years remain unpredictable,
reflecting fundamental uncertainty rather than methodological
deficiency but nonetheless limiting long-horizon planning.
Interpretability challenges, computational efficiency for real-
time deployment, and vulnerability to financial manipulation
require further research.

Future Research Directions:

1. Dynamic Graph Neural Networks: Incorporating
temporal dynamics through recurrent or attention-
based architectures could extend predictive horizons
and capture acceleration patterns in financial
deterioration.

2.  Multi-Modal Data Fusion: Integrating alternative
data sources such as transaction data, news
sentiment, and supply chain event logs could
enhance prediction accuracy, particularly for early
warning signals.

3.  Industry-Specific Calibration: Developing sector-
specific models that account for distinct risk profiles
across manufacturing, services, technology, and other
sectors would improve generalization.

4.  Adversarial Robustness: Investigating vulnerability
to financial manipulation and developing defensive
mechanisms through adversarial training and cross-
validation with external data sources.

5.  Explainable AI Techniques: Developing attention
mechanisms and rule extraction methods to enhance
model interpretability while maintaining predictive
performance.

6. Systemic Risk Modeling: Extending the approach to
model risk contagion and cascading failures across
supply chain networks, supporting macro-prudential
policy and systemic risk assessment.

Broader Impact: The convergence of topological data analysis
and graph neural networks for credit risk assessment
represents more than incremental improvement in predictive
accuracy. It offers a fundamentally different lens for
understanding  financial distress—one that recognizes
companies as embedded in complex relational networks rather
than isolated entities, that respects the non-linear and
topological structure of financial data rather than imposing
linear assumptions, and that provides interpretable
visualizations alongside black-box predictions.

As supply chains grow increasingly interconnected and
complex, and as SMEs continue to play central roles in
economic activity, the ability to accurately assess credit risk
while understanding systemic interdependencies becomes
ever more critical. The BM-GNN framework and related
topological-graph approaches provide promising tools for
meeting this challenge, offering financial institutions,
corporate managers, and policymakers enhanced capabilities
for credit evaluation, risk management, and strategic decision-
making.

The integration of computational topology, graph deep
learning, and domain knowledge in credit risk assessment
exemplifies the productive synergy between advanced
analytical techniques and practical financial problems. As
methodologies continue to evolve and mature, their adoption
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in operational systems will likely accelerate, contributing to
more stable, efficient, and equitable credit allocation in the
global economy.
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