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ABSTRACT 

 
This paper presents the thermal flexure analysis of single layer plates subjected to sinusoidal thermal load 

linearly varying across the thickness. Analytical solutions for thermal displacements and stresses are 

investigated by using a trigonometric shear deformation plate theory which includes different functions in 

terms of thickness coordinate to represent the effect of shear deformation. The theory presented is 

variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress 

variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress 

free surface conditions. Governing equations of equilibrium and associated boundary conditions of the 

theory are obtained using the principle of virtual work. The Navier solution for simply supported orthotropic 

plates has been developed. The validity of the present theory is verified by comparing the results with various 

Shear Deformation Theory. 
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1. INTRODUCTION 

 
Orthotropic materials are widely used, particularly in aerospace engineering. By virtue of their high strength to 

weight ratios and because of their mechanical properties in various directions, they can be tailored as per 

requirements. Further they combine a number of unique properties, including corrosion resistance, high 

damping, temperature resistance and low thermal coefficient of expansion. These unique properties have 

resulted in the expanded use of the advance orthotropic materials in structures subjected to severe thermal 

environment.  

These structures are usually referred to as high temperature structures. Examples are provided by structures used 

in high speed aircraft, spacecraft etc. The high velocities of such structures give rise to aerodynamic heating, 

which produces intense thermal stresses that reduces the strength of aircraft structure. Coefficients of thermal 

expansion in the direction of fibers are usually much smaller than those in the transverse direction. This results 

in high stresses at the interfaces. In order to describe the correct thermal response of orthotropic plates including 

shear deformation effects refined theories are required. 

 

2. SIGNIFICANCE 

 
Composite materials are widely used, particularly in aerospace engineering. By virtue of their high strength to 

weight ratios and because of their mechanical properties in various directions, they can be tailored as per 

requirements. Further they combine a number of unique properties, including corrosion resistance, high 

damping, temperature resistance and low thermal coefficient of expansion. These unique properties have 

resulted in the expanded use of the advance composite materials in structures subjected to severe thermal 

environment. These structures are usually referred to as high temperature structures. Examples are provided by 

structures used in high speed aircraft, spacecraft etc. The high velocities of such structures give rise to 

aerodynamic heating, which produces intense thermal stresses that reduces the strength of aircraft structure. 

Coefficients of thermal expansion in the direction of fibres are usually much smaller than those in the transverse 

direction. This results in high stresses at the interfaces. In order to describe the correct thermal response of 

plates including shear deformation effects refined theories are required.  

 

3. THEORETICAL CONTENTS 
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Consider a square single layer plate as shown in Figure 1. The plate is assumed in Cartesian coordinate (x, y, z) 

system with origin ′O′. It is convenient to take the xy−plane of the coordinate system to be the undeformed 

middle plane of the laminate. The z− axis is taken to be positive in a downward direction from the middle plane. 

The plate thickness is denoted by ′h′ while its dimensions, along the x and y directions, are denoted by ′a′ and ′b′ 
respectively. Perfect bonding between the orthotropic layers and temperature independent mechanical and 

thermal properties are assumed. The plate is subjected to a thermal load  , ,T x y z .  

 
 

Fig.1 Plate Geometry 

 

3.1 The Displacement Field 

For the bending analysis, the displacement field of a trignometric shear deformation theory at a point in the 

single layer plate is expressed as: 
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Where Uand Vare the in-plane displacement components in the x and ydirections respectively, and W is the 

transverse displacement in the z direction. The Trigonometric function in terms of thickness coordinate in both 

the displacements U and V is associated with the transverse shear stress distribution through the thickness of the 

plate and the functions 
)( , x y

 and 
)( , x y

 are the unknown functions associated with the shear slopes. The 

trignometric function 
( )f z

 is given as:  

( ) sin
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3.2 Strain-displacement Relation 

For the small plate deformation, the six strain components (εx, εy, εz, γxy, γxz, γyz)and three displacement 

components (U, V, W) are related according to the well-known linear kinematic relations. 
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By applying the strain displacement relations of three dimensional elasticity to the displacement field given by 

Eq. (1), one obtains the following approximate strain field. 
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3.3 Stress-Strain Relationship  

 

The stress-strain relationship for the single layerplate under thermal loading can be written as:  
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Where x and y are the thermal expansion coefficients in the common structural axis systems, T= zT1(x, y) is 

the thermal load and Qijare the transformed elastic coefficients. 

 

1 12 2 2, ,
11 12 221 1 112 21 12 21 12 21

, ,
66 12 55 12 44 23

E E E
Q Q Q

Q G Q G Q G


     

  
  

  
    (5) 

Where E1, E2 are the elastic moduli, 12  and 21  are Poisson’s ratios and G12, G23, G13 are the shear moduli of 

the material. 

 

3.4 Resultant forces and moments 

The resultant forces and moments of a orthotropic plate can be obtained by integrating Eq. (4) through 

thickness, and are written as: 
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Where ( , , )
x y

N N
xy

N  are the resultant shear forces, ( , , )c c c
M M M

x y xy
 are the resultant moments 

associated with the classical plate theory, ( , , )s s s
M M M

x y xy
 are the resultant moments associated with the 

transverse shear effects and ( , )
xz

Q Q
yz

  are the resultant shear forces associated with the transverse shear 

effects. By substituting Eq. (4) into Eq. (6), following expressions of resultant stresses and moments are 

obtained. 
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3.5 Governing Equation and boundary conditions 

Using the expressions for strains, stresses, and principle of virtual work, variational consistent differential 

equations and boundary conditions for the plate under consideration are obtained. The principal of virtual work 

when applied to the plate leads to: 

( ) 0
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Where the symbol δ denotes variational operator. In Eq. (7) mechanical load is taken as zero since the plate is 

subjected to pure linear thermal load. Inserting strains from Eq. (3) and stresses from Eq. (4) into Eq. (19), 

integrating by parts and setting coefficients of , , , ,u v w
o o o

      to zero, the governing equations of 

the unified plate theory are obtained as follows, 
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The following are the boundary conditions obtained at the edges x = 0 and x = a: 

– Either 
x

N = 0 or 0u  is prescribed 

– Either N
xy

= 0 or 0v  is prescribed 

– Either V
x

= 0 or w is prescribed 
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is prescribed 
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The following are the boundary conditions obtained at the edges y = 0 and y = b: 

– Either N
xy

= 0 or 0u  is prescribed 

– Either N
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= 0 or 0v  is prescribed 

– Either V
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s

M
y
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Inserting stress resultants in terms of unknown variables from Eqs. (7) to (16) into the Eq. (20), the five 

governing equations of unified shear deformation theory are taken from: 
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3.6 Thermoelastic analysis of plate 

 

Bending solutions of Eq. (20) for a simply supported single layer square plate are obtained by using the Navier’s 

approach. The plate is subjected to thermal load (T) only. The following simply supported boundary conditions 

are assumed 
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           (27) 

 

The orthotropic plate is subjected to sinusoidal thermal load linearly varying through the thickness ( )
1

T zT
of plate as given below: 

sin sin
1 0

T T x y           (28) 
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Where / , /a b     and 
0

T  is the maximum intensity of thermal load at center of plate. The 

following middle surface displacement functions are assumed which satisfies the boundary conditions and the 

governing equations of simply supported laminated composite plates: 

 

, ) cos sin
1

, ) sin cos1

, ) cos sin1

,

(
0

(0

(

( ) sin cos1

, ) s n in( i s
1

x y u x y

x y v x y

x y x y

x y x y

w x y w x y

u

v

 







  

  

 













       (29) 

Substitution of solution form given by Eq. (29) into governing equations (21)-(25) and setting value of 

mechanical load (q) zero, results into a system of the algebraic equations which can be written into a matrix 

form as follows: 

11 12 13 14 15 1 1

21 22 23 24 25 1 2

31 32 33 34 35 1 3

41 42 43 44 45 1 4

51 52 53 54 55 1 5

K K K K K u f

K K K K K v f

K K K K K w f

K K K K K f

K K K K K f





   
   
   
        

    
    
    

     

     (30) 

The elements K
ij

 of stiffness matrix [ ]K are given below:  

 

2 2( ),
11 11 66

( ) ,22 12 66

3 2( ) ,13 11 12 66

2 2( ),14 11 66

( ) ,15 12 66

2 2( ),22 22 66

3 2( ) ,23 22 12 66

( ) ,24 12 66

2 2( ),25 22 66

4 2 2( 2( 2 )33 11 12 66

K A A

K A A

K B B B

K C C

K C C

K A A

K B B B

K C C

K C C

K D D D

 



 

 



 

  



 

  

 

 

  

 

 

 

  

 

 

    4),22

3 2( 2 ) ,34 11 12 66

3 2( 2 ) ,35 22 12 66

2 2( ),44 11 66 55

( ) ,45 12 66

2 2( )
55 22 66 44

D

K F F F

K F F F

K H H I

K H H

K H H I



 

  

 



 

  

  

  

 

   

    (31) 
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The elements f
i

of force vector { }f are given below: 

 

11 12

12 22

11 12

11 12

12 2

( ) ,
1 0

( ) ,2 0

2 2( ) ( ) ,3 11 0 22 0

( ) ,4 0

( )
5 02

f B B T

f B B T

f D D T D D T
y y

f C C T

f C B

x y

x y

x x

x y

y
T

x





 





 

 

   

 

 

    (32) 

From the solution of Eq. (30), the unknown coefficients 
1, 1, 1, 1, 1

u v w    can be obtained readily. Substituting 

these coefficients into Eq. (29), displacements and rotations can be obtained, and subsequently, stresses can be 

obtained using Eqs. (1)-(4). Transverse shear stresses obtained by using constitutive relations are designated as

,
CR CR
xzn yzn  . To satisfy the continuity conditions at the layer interface, transverse shear stresses are also obtained 

by using following stress equilibrium equations of 3D elasticity theory and designated by ,
EE EE
xzn yzn  . 

 0
xy

x y

x zx

z

  
  

  
and 0

xyy

y x

zx

z

    
  

  
    (33) 

Then further numerical results for the solution are obtained. 
 

4. NUMERICAL RESULTS AND DISCUSSION 

 
In this paper, displacements and stresses are obtained for square single layer plate subjected to linear thermal 

loading. The following properties of  

1 12 13 23

2 2 2 2

12 21

25, 0.5, 0.25

1
, 0.25, 0.01

3y

E G G G

E E E E

  



   

  
       (34) 

Where the subscripts 1, 2 and 3 denote properties associated with x, y and z-directions respectively. For the 

purpose of comparison, results are presented in the following normalized forms. 

0

10
,

2 2
n

a b
W w

T b

   
 

  

 

In the preceding section, detail solution procedure for the thermoelastic analysis of single layer plate has been 

discussed. The material properties used in all examples are given in Eq. (34). The results obtained are presented 

in normalized form given by Eq. (35). Normalized thermal displacement under sinusoidally distributed linear 

thermal load obtained for orthotropic plate using trigonometric shear deformation theory is presented in Table1. 

 

 

Table 1. Results 

 

 

b/h Source Un Vn Wn xn σyn τxy τxz τyz 

4 Present 0.4017 0.4281 1.0902 0.2767 2.2785 1.3834 0.0957 0.1169 

4 A. S. Sayyad 0.4016 0.4887 1.0847 0.2660 2.2168 1.3985 0.1463 0.1507 
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5. CONCLUSION 

Thermal response of single layer plate under non-linear thermal load across the thickness of plate has been 

studied by using present trigonometric shear deformation theory. The results are compared with higher order 

shear deformation theory.Present theory gives good prediction of the thermal response of laminated plates in 

respect of displacements and stresses. The effect of linear variation of thermal load through the thickness of 

laminated plate shows the significant effect on in-plane normal and transverse shear stresses as observed from 

this investigation which validates the efficacy of the present theory. 
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