
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

THREADED THINKER: CONCURRENT CHESS ENGINE

Prof. Nisha Auti1, Gaurav Lonsane2, Mitesh Patil3, Ritesh Dimble4, Chintan Randhe5,Poonam Lakhe6

*1Professor Department of Computer Engineering, JSPM Narhe Technical Campus, Pune, Maharashtra, India

*,2,3,4,5,6Student, Department of Computer Engineering, JSPM Narhe Technical Campus, Pune, Maharashtra, India

ABSTRACT

Since the advent of digital era, chess has made it’s place on a computer and year after year, it is evolving in

a way that it can search and evaluate position better than previously existing techniques and at the same time,

chess algorithms are backed up by performance provided by modern hardware and learning technique offered

by field of artificial intelligence especially reinforcement learning that works with monte carlo search tree .

Armed with all these technologies, modern chess engines are capable of analyzing chess and coming up with

moves that can even outperform best grand masters in the world. Modern chess engines are not only designed

to play standard chess but also to play various chess variants, while this expands the range of games that

engines can play, it also introduces new complexities and challenges.

Keywords - Chess, Engine, Game AI algorithms, Min Max algorithm.

I. INTRODUCTION

Chess is one of the oldest and eminent game that

is not only played among humans but also played

among computers and computers that plays chess

are known as chess engines. The chess engine

simply does one thing i.e to find best move but it

is called engine because in order to find best move

,it has to search very large magnitude of

possibilities that would consume significant

amount of computational power.

To deal with such complexity of chess, chess

engine uses algorithms that saves time by

exploring relevant branches and pruning

irrelevant branches of whole game tree .The

selection mechanism of branches is based on

evaluation techniques. In modern chess engines,

there are two evaluation technique, classical

evaluation and neural network based evaluation

that helps chess engines to gain significant amount

of elo. By training a neural network on a large

database of chess games, it possible to develop a

more accurate evaluation function that takes into

account more subtle features of the position.

Modern hardware plays a crucial role in optimizing

and increasing performance of chess engine.Chess

engine uses deep learning libraries that harness the

power of general purpose graphics processing units

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

to train neural network based evaluation in

parallel. Chess engines have come a long way and

are now known all around the world to defeat

some of the best Grand masters of the world with

their own strategies.

This paper describes a chess engine that contains

search techniques that can compute billions of

possible positions and evaluation technique

operates on acquired domain specific knowledge

that is generated from estimation done on the basis

of different positional factors.

II. LITRATURE SURVEY

Paper Name: Accelerating Monte Carlo Tree

Search Using Speculative Tree Traversal

Author: Juhwan Kim, Byeongmin Kang,

Hyugmin cho

Abstract : Monte Carlo Tree Search (MCTS)

algorithms show outstanding strengths in

decision-making problems such as the game of

Go. However, MCTS requires significant

computing loads to evaluate many nodes in the

decision tree to make a good decision.

Parallelizing MCTS node evaluations is

challenging because MCTS is a sequential

process that each round of tree traversal depends

on the previous node evaluations. In this work, we

present SpecMCTS, a new approach for

accelerating MCTS by speculatively traversing

the search tree. Many MCTS applications, such as

AlphaGo Zero, use a deep neural network (DNN)

model to evaluate the tree nodes during the search.

SpecMCTS uses a pair of DNN models, the

speculation model and the main model.

2.Paper Name: A Parallel Algorithm for

Game Tree Search Using GPGPU

Author: Liang Li, Hong Liu, Wei Li and Hao

Wang

Abstract : Game tree search is a classical problem

in the field of game theory and artificial

intelligence. Fast game tree search algorithm is

critical for computer games asking for real-time

responses. In this paper, we focus on how to

leverage massive parallelism capabilities of GPU to

accelerate the speed of game tree search algorithms

and propose a concise and general parallel game

tree search algorithm on GPU. The performance

model of our algorithm is presented and analyzed

theoretically.

3.Paper Name: Metamorphic Testing of an

Artifically Intelligent Chess Game

Author: Aisha Lia, Muddassar Azam Sindhu and

Ghanzanfar Farooq Siddiqui

Abstract : Artificially intelligent (AI) game

software incorporates different algorithms to

generate intelligent human-like responses to the

users playing them. Testing AI game software

poses great difficulty because of the complex

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 4

possibilities that can result at a given point and

analysis of said possibilities is a tedious task.

Also during software development there are

resource constraints due to which testing targets

specific parts of the software. An AI game of

Chess takes into consideration a large amount of

possible outcomes at any given point before

deciding a move. Therefore, testing it in its

entirety is impractical. In this paper we propose

a metamorphic testing approach for testing an AI

Chess i.e. a Chess engine’s algorithm of

determining and pruning out possible outcomes

and ultimately deciding on a final outcome. For

validating our approach, we have done error

seeding on an open source Chess engine and

tested it through our approach. The results for

our proposed approach for testing an AI Chess

game through metamorphic relations show that it

is successful in revealing 71% of the total seeded

faults.

4.Paper Name: Comparsion Training for

Computer Chineese Chess

Author: Jr-Chang Chen

Abstract: This paper describes the application of a

modified comparison training for automatic

feature weight tuning. The final objective is to

improve the evaluation functions used in Chinese

chess programs. First, we apply n-tuple networks

to extract features. N-tuple networks require very

little expert knowledge through its large numbers

of features, while simultaneously allowing easy

access. Second, we propose a modified comparison

training into which tapered eval is incorporated.

Experiments show that with the same features and

the same Chinese chess program, the automatically

tuned feature weights achieved a win rate of

86.58% against the hand-tuned features.

III. SYSTEM ARCHITECTURE

Fig 1. System Architecture

IV. MODULES

Engine :

This module is composition of other sub-modules

that are move generator, board, search, evaluator,

transposition table

Board :

This module is meant to work in coordination with

engine as it is responsibility of this module to

establish appropriate data structure for storing and

updating the current state of chess board. This

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 5

includes information such as positions of all

pieces, the current player to move, the castling

rights and the en-passant target square.

Move Generator :

The move generator module in a chess engine is

responsible for all the legal moves that are

available to the current player in the current

position. This is crucial component of the engine,

as it allows the search algorithm to explore the

different possible moves and evaluate their

potential outcomes.

Evaluator :

The evaluator module in a chess engine is

responsible for assessing the strengths and

weaknesses of a given position on the board. This

is accomplished through the use of evaluation

function. The evaluation function is typically

based on a set of heuristic rules and principles

that have been developed through the analysis of

countless chess game by human experts.

Search :

The search module in a chess engine is

responsible for exploring the possible moves and

evaluating their potential outcomes in order to

determine the best move to play in a given

position. This is a crucial component of the

engine as it allows the engine to make intelligent

Transposition Table :

The transposition table module is a key

component of chess engine’s search algorithm,

designed to improve efficiency of search process

by avoiding redundant evaluations of previously

search positions

I/O Interface :

This module is meant for end user which is

connected to underlying chess engine through

Universal Chess Interface i.e open communication

protocol that enables the chess engines to

communicate with user interface.

V. MOTIVATION

The motivation for this project came from playing

chess and from watching lot streaming videos of

chess player playing chess wonderfully, especially

of grand master and then saw grand master playing

chess with chess engine especially with alpha zero

to get better at playing chess that simply brought

amazement and as programmers,we thought, we

can also build and understand that what makes

chess engine better than year of experience of great

chess player.

VI. OBJECTIVE OF THE SYSTEM

* To enable the student understand chess more

better

* To enable the student develop their cognitive skill

* To enable the student to improve memory and

Planning

* To enable the student to improve their focus

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 6

VII. SYSTEM REQUIRMENT

A. Software Requirement

1. Operating system : Windows 8

2. Coding Language : C/C++

3. IDE : Visual Studio

B. Hardware Requirement

4. System : Intel i7 Processor.

5. Hard Disk : 20 GB.

6. Ram : 4 GB

VIII. METHODOLOGY

Algorithm:

Min-max Searching

The core of the chess playing algorithm is a local

min-max search of the game space. The algorithm

attempts to Minimize the opponent's score, and

Maximize its own. At each depth (or "ply" as it's

as its referred to in computer chess terminology),

all possible moves are examined, and the static

board evaluation function is used to determine the

score at the leafs of the search tree. These scores

propagate up the tree and are used to select the

optimal move at each depth. The bigger the ply,

the better the chosen move will be (as the

algorithm is able to look ahead more moves).

Alpha-beta Pruning

This common pruning function is used to

considerably decrease the min-max search space. It

essentially keeps track of the worst and best moves

for each player so far, and using those can

completely avoid searching branches which are

guaranteed to yield worse results. Using this

pruning will return the same exact moves as using

min-max (i.e. there is no loss of accuracy). Ideally,

it can double the depth of the search tree without

increasing search time. To get close to this

optimum, the available moves at each branch

should be appropriately sorted. The sorting is done

by the looking at the scores of each possible move,

looking only 1 ply ahead. The intuitive sort would

be to arrange them from best to worst, but that's not

always best.

Quiescence Searching

Since the depth of the min-max search is limited,

problems can occur at the frontier. A move that may

seem great may actually be a disaster because of

something that could happen on the very next

move. Looking at all these possibilities would mean

increasing the ply by 1, which is not the solution, as

we would need to extend it to arbitrarily large

depths. The goal is thus to search the tree until

"quiescent" positions are found - i.e ones that don't

affect the current positions too much (most

maneuvers in chess result in only slight advantages

or disadvantages to each player, not big ones at

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 7

once). Hence, looking at higher depths is

important only for significant moves - such as

captures.

Static Board Evaluation Function

When the min-max algorithm gets down to the

leaves of its search, it's unlikely that it reached a

goal state (i.e. a check-mate). Therefore, it needs

some way to determine whether the given board

position is "good" or "bad" for it, and to what

degree. A numerical answer is needed so that it

can be compared to other board positions in a

quantifiable way. Advanced chess playing

programs can look at hundreds features of the

board to evaluate it. The simplest, and perhaps

most intuitive, look at only piece possession.

Clearly, having a piece is better than not having

one (in most cases at least). Furthermore, the

pieces have different values. A pawn is worth the

least; the bishop and knight are next, then the

rook, and finally: the queen. The king is obviously

priceless, as losing it means losing the game.

IX. CONCLUSION

Each system has the flaw of having a relatively

lower AI in the beginning but it evolves as it loses

a game and then the algorithm creates a new

population that is better than the previous and

avoids the mistakes that the engine made initially.

Learning from each iteration, the algorithm

improves itself in game play to reach the levels of

a grand master and is then used in public events to

determine whether the engine is successful or not.

Most systems also use databases with grand master

entries, following which the machine makes moves

that previously winning grand masters have made.

This is the closest an engine has got to depicting

human moves in the game depending on the move’s

success rate.

X. REFERENCES

[1] X. Guo, S. Singh, H. Lee, R. Lewis, and X. Wang, “Deep

learning for realtime atari game play using offline monte-

carlo tree search planning,” in NIPS, 2014.

[2] D. Silver et al., “Mastering the game of Go with deep

neural networks and tree search,” Nature, vol. 529, no.

7587, pp. 484–489, 2016.

[3] “Mastering the game of Go without human knowledge,”

Nature, vol. 550, no. 7676, pp. 354–359

[4] Y. Tian et al., “ELF OpenGo: an analysis and open

reimplementation of AlphaZero,” in ICML, 2019.

[5] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo

planning,” in Euro. Conf. Mach. Learn.

[6] G. M.-B. Chaslot, M. H. Winands, and H. J. v. d. Herik,

“Parallel Monte-Carlo Tree Search,” in International

Conference on Computers and Games, 2008.

[7] C. B. Browne et al., “A survey of Monte-Carlo tree search

methods,” IEEE Trans. Comput. Intell. AI in Games, vol.

4, no. 1, pp. 1–43, 2012.

[8] A. Liu, J. Chen, M. Yu, Y. Zhai, X. Zhou, and J. Liu,

“Watch the Unobserved: A Simple Approach to

Parallelizing Monte Carlo Tree Search ,” in ICLR, 2020.

http://www.ijsrem.com/

