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ABSTRACT 

Since the advent of digital era, chess has made it’s place on a computer and year after year, it is evolving in 

a way that it can search and evaluate position better than previously existing techniques and at the same time, 

chess algorithms are backed up by performance provided by modern hardware and learning technique offered 

by field of artificial intelligence especially reinforcement learning that works with monte carlo search tree . 

Armed with all these technologies, modern chess engines are capable of analyzing chess and coming up with 

moves that can even outperform best grand masters in the world. Modern chess engines are not only designed 

to play standard chess but also to play various chess variants, while this expands the range of games that 

engines can play, it also introduces new complexities and challenges.  
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I. INTRODUCTION 

Chess is one of the oldest and eminent game that 

is not only played among humans but also played 

among computers and computers that plays chess 

are known as chess engines. The chess engine 

simply does one thing i.e to find best move but it 

is called engine because in order to find best move 

,it has to search very large magnitude of 

possibilities that would consume significant 

amount of computational power. 

 

To deal with such complexity of chess, chess 

engine uses algorithms that saves time by 

exploring relevant branches and pruning 

irrelevant branches of whole game tree .The 

selection mechanism of branches is based on 

evaluation techniques. In modern chess engines, 

there are two evaluation technique, classical 

evaluation and neural network based evaluation 

that helps chess engines to gain significant amount 

of elo. By training a neural network on a large 

database of chess games, it possible to develop a 

more accurate evaluation function that takes into 

account more subtle features of the position. 

Modern hardware plays a crucial role in optimizing 

and increasing performance of chess engine.Chess 

engine uses deep learning libraries that harness the 

power of general purpose graphics processing units 
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to train neural network based evaluation in 

parallel. Chess engines have come a long way and 

are now known all around the world to defeat 

some of the best Grand masters of the world with 

their own strategies. 

 

This paper describes a chess engine that contains 

search techniques that can compute billions of 

possible positions and evaluation technique 

operates on acquired domain specific knowledge 

that is generated from estimation done on the basis 

of different positional factors. 

 

II.  LITRATURE SURVEY 

Paper Name:  Accelerating Monte Carlo Tree 

Search Using Speculative Tree Traversal  

 

Author: Juhwan Kim,  Byeongmin  Kang,  

Hyugmin cho  

Abstract : Monte Carlo Tree Search (MCTS) 

algorithms show outstanding strengths in 

decision-making problems such as the game of 

Go. However, MCTS requires significant 

computing loads to evaluate many nodes in the 

decision tree to make a good decision. 

Parallelizing MCTS node evaluations is 

challenging because MCTS is a sequential 

process that each round of tree traversal depends 

on the previous node evaluations. In this work, we 

present SpecMCTS, a new approach for 

accelerating MCTS by speculatively traversing 

the search tree. Many MCTS applications, such as 

AlphaGo Zero, use a deep neural network (DNN) 

model to evaluate the tree nodes during the search. 

SpecMCTS uses a pair of DNN models, the 

speculation model and the main model.  

 

2.Paper Name: A Parallel Algorithm for 

Game Tree Search Using GPGPU 

 

Author: Liang Li, Hong Liu, Wei Li and Hao 

Wang 

Abstract : Game tree search is a classical problem 

in the field of game theory and artificial 

intelligence. Fast game tree search algorithm is 

critical for computer games asking for real-time 

responses. In this paper, we focus on how to 

leverage massive parallelism capabilities of GPU to 

accelerate the speed of game tree  search algorithms 

and propose a concise and general parallel game 

tree search algorithm on GPU. The performance 

model of our algorithm is presented and analyzed 

theoretically.  

  

3.Paper Name:  Metamorphic Testing of an 

Artifically Intelligent Chess Game 

 

Author: Aisha Lia, Muddassar Azam Sindhu and 

Ghanzanfar Farooq Siddiqui 

 

Abstract : Artificially intelligent (AI) game 

software incorporates different algorithms to 

generate intelligent human-like responses to the 

users playing them. Testing AI game software 

poses great difficulty because of the complex 
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possibilities that can result at a given point and 

analysis of said possibilities is a tedious task. 

Also during software development there are 

resource constraints due to which testing targets 

specific parts of the software. An AI game of 

Chess takes into consideration a large amount of 

possible outcomes at any given point before 

deciding a move. Therefore, testing it in its 

entirety is impractical. In this paper we propose 

a metamorphic testing approach for testing an AI 

Chess i.e. a Chess engine’s algorithm of 

determining and pruning out possible outcomes 

and ultimately deciding on a final outcome. For 

validating our approach, we have done error 

seeding on an open source Chess engine and 

tested it through our approach. The results for 

our proposed approach for testing an AI Chess 

game through metamorphic relations show that it 

is successful in revealing 71% of the total seeded 

faults. 

 

4.Paper Name: Comparsion Training for 

Computer Chineese Chess 

 

Author: Jr-Chang Chen 

Abstract: This paper describes the application of a 

modified comparison training for automatic 

feature weight tuning. The final objective is to 

improve the evaluation functions used  in  Chinese 

chess programs. First, we apply n-tuple networks 

to extract features. N-tuple networks require very 

little expert knowledge through its large numbers 

of features, while simultaneously allowing easy 

access. Second, we propose a modified comparison 

training into which tapered eval is incorporated. 

Experiments show that with the same features and 

the same Chinese chess program, the automatically 

tuned  feature weights achieved a win rate of 

86.58% against the hand-tuned features. 

 

III. SYSTEM ARCHITECTURE 

 

Fig 1. System Architecture 

 

IV. MODULES 

 

Engine : 

 

This module is composition of other sub-modules 

that are move generator, board, search, evaluator, 

transposition table  

 

Board : 

This module is meant to work in coordination with 

engine as it is responsibility of this module to 

establish appropriate data structure for storing and 

updating the current state of chess board. This 
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includes information such as positions of all 

pieces, the current player to move, the castling 

rights and the en-passant target square.  

 

Move Generator : 

The move generator module in a chess engine is 

responsible for all the legal moves that are 

available to the current player in the current 

position. This is crucial component of the engine, 

as it allows the search algorithm to explore the 

different possible moves and evaluate their 

potential outcomes. 

 

Evaluator : 

The evaluator module in a chess engine is 

responsible for assessing the strengths and 

weaknesses of a given position on the board. This 

is accomplished through the use of evaluation 

function. The evaluation function is typically 

based on a set of heuristic rules and principles 

that have been developed through the analysis of 

countless chess game by human experts. 

 

Search : 

The search module in a chess engine is 

responsible for exploring the possible moves and 

evaluating their potential outcomes in order to 

determine the best move to play in a given 

position. This is a crucial component of the 

engine as it allows the engine to make intelligent 

 

Transposition Table : 

The transposition table module is a key 

component of chess engine’s search algorithm, 

designed to improve efficiency of search process 

by avoiding redundant evaluations of previously 

search positions 

 

I/O Interface : 

 

This module is meant for end user which is 

connected to underlying chess engine through 

Universal Chess Interface i.e open communication 

protocol that enables the chess engines to 

communicate with user interface. 

 

V. MOTIVATION 

The motivation for this project came from playing 

chess and from watching lot streaming videos of 

chess player playing chess wonderfully, especially 

of grand master and then saw grand master playing 

chess with chess engine especially with alpha zero 

to get better at playing chess that simply brought 

amazement and as programmers,we thought, we 

can also build and understand that what makes 

chess engine better than year of experience of great 

chess player. 

 

VI.  OBJECTIVE OF THE SYSTEM 

* To enable the student  understand chess more 

better  

* To enable  the student develop their cognitive skill 

* To enable the student to improve memory and 

Planning 

* To enable the student to improve their focus 
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VII.  SYSTEM REQUIRMENT 

 

A. Software Requirement 

1. Operating system :  Windows 8 

2. Coding Language :  C/C++ 

3. IDE :    Visual Studio 

 

B. Hardware Requirement 

4. System :             Intel i7 Processor. 

5. Hard Disk :  20 GB. 

6. Ram :   4 GB 

 

 

VIII.  METHODOLOGY 

 

Algorithm: 

Min-max Searching 

The core of the chess playing algorithm is a local 

min-max search of the game space. The algorithm 

attempts to Minimize the opponent's score, and 

Maximize its own. At each depth (or "ply" as it's 

as its referred to in computer chess terminology), 

all possible moves are examined, and the static 

board evaluation function is used to determine the 

score at the leafs of the search tree. These scores 

propagate up the tree and are used to select the 

optimal move at each depth. The bigger the ply, 

the better the chosen move will be (as the 

algorithm is able to look ahead more moves). 

 

 

Alpha-beta Pruning 

 

This common pruning function is used to 

considerably decrease the min-max search space. It 

essentially keeps track of the worst and best moves 

for each player so far, and using those can 

completely avoid searching branches which are 

guaranteed to yield worse results. Using this 

pruning will return the same exact moves as using 

min-max (i.e. there is no loss of accuracy). Ideally, 

it can double the depth of the search tree without 

increasing search time. To get close to this 

optimum, the available moves at each branch 

should be appropriately sorted. The sorting is done 

by the looking at the scores of each possible move, 

looking only 1 ply ahead. The intuitive sort would 

be to arrange them from best to worst, but that's not 

always best.  

 

Quiescence Searching 

      

Since the depth of the min-max search is limited, 

problems can occur at the frontier. A move that may 

seem great may actually be a disaster because of 

something that could happen on the very next 

move. Looking at all these possibilities would mean 

increasing the ply by 1, which is not the solution, as 

we would need to extend it to arbitrarily large 

depths. The goal is thus to search the tree until  

"quiescent" positions are found - i.e ones that don't 

affect the current positions too much (most 

maneuvers in chess result in only slight advantages 

or disadvantages to each player, not big ones at 
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once). Hence, looking at higher depths is 

important only for significant moves - such as 

captures.  

 

Static Board Evaluation Function 

When the min-max algorithm gets down to the 

leaves of its search, it's unlikely that it reached a 

goal state (i.e. a check-mate). Therefore, it needs 

some way to determine whether the given board 

position is "good" or "bad" for it, and to what 

degree. A numerical answer is needed so that it 

can be compared to other board positions in a 

quantifiable way. Advanced chess playing 

programs can look at hundreds features of the 

board to evaluate it. The simplest, and perhaps 

most intuitive, look at only piece possession. 

Clearly, having a piece is better than not having 

one (in most cases at least). Furthermore, the 

pieces have different values. A pawn is worth the 

least; the bishop and knight are next, then the 

rook, and finally: the queen. The king is obviously 

priceless, as losing it means losing the game. 

 

 

IX.  CONCLUSION 

Each system has the flaw of having a relatively 

lower AI in the beginning but it evolves as it loses 

a game and then the algorithm creates a new 

population that is better than the previous and 

avoids the mistakes that the engine made initially. 

Learning from each iteration, the algorithm 

improves itself in game play to reach the levels of 

a grand master and is then used in public events to 

determine whether the engine is successful or not. 

Most systems also use databases with grand master 

entries, following which the machine makes moves 

that previously winning grand masters have made. 

This is the closest an engine has got to depicting 

human moves in the game depending on the move’s 

success rate.  
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