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Abstract - Today’s mobile devices contain densely 

packaged system-on-chips (SoCs) with multi-core, high 

frequency CPUs and complex pipelines. In parallel, 

sophisticated SoC-assisted security mechanisms have become 

commonplace for protecting device data, such as trusted 

execution environments, full disk and file-based encryption. 

Both advancements have dramatically complicated the use of 

conventional physical attacks, requiring the development of 

specialised attacks Our proposed classification system allows 

to analyze side-channel attacks systematically, and facilitates 

the development of novel countermeasures. Besides this new 

categorization system, the extensive survey of existing attacks 

and attack strategies provides valuable insights into the 

evolving field of side-channel attacks, especially when 

focusing on mobile devices.. 
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1.INTRODUCTION 

 
Twenty years later, mobile devices are a necessary 

component of every person's everyday existence. In one way 
or another, these devices make life easier every day. Examples 
of these jobs include figuring out the quickest route to get 
there, making quick payments without using plastic cards, 
managing our time well, sending information instantly, taking 
pictures and videos, and recording sounds. Additionally, they 
make it possible to process a lot of work procedures, which 
compels the user to carry them around at all times. These 
"electronic companions" consequently turn into repositories of 
private information, guardians of state and business secrets, 
and observers of private discussions. Thus, the issue of having 
access to all information resources arises. 

Modern smart devices come equipped with a multitude of 
sensors, which opens up a wide range of possibilities.Many 
sensors are integrated into modern smart devices, opening up a 
world of possibilities in the areas of productivity, mobile 
health, context awareness, and activity identification. 
Regrettably, these sensors can also serve as entry points for 
accidental disclosure of user activity data.[1] Unauthorized 
access to sensor data containing user preferences, habits, 
behaviors, and personal information has long been a serious 
security and privacy risk. 

 Users must give their express consent for mobile operating 
systems like Android and iOS to allow an application access to 
sensitive data (such as GPS positions, microphone recordings, 
and camera images). On the other hand, information gathered 
from more general sensors—like magnetometers, 
accelerometers, and gyroscopes—is less controlled and 
frequently accessible by programs without the consent of 
users. Recent times have seen the emergence of numerous 
side-channel attacks due to unmonitored access to the data 
from these sensors. Previous attempts have shown security and 

privacy issues arising from programs using the data from 
motion sensors. 

 These publications suggest attacks aimed at deducing 
sensitive user privacy information, including fingerprinting of 
websites and applications, touch actions and keystrokes, 
passwords, and PIN codes. Unfortunately, because software is 
updated frequently and new devices are released into the 
market, side-channel assaults remain a key source of concern 
for developers and users. 

 Especially the following key enablers enable more 
devastating attacks on mobile devices.  

1.  Always-on and portable: To begin with, mobile 
devices are always carried about because of their portability 
and are always turned on. They are therefore deeply ingrained 
in our daily existence. 

2. Bring your own device (BYOD): Employees utilize 
personal devices to process company data and access corporate 
infrastructure in an effort to reduce the number of devices they 
carry about, which emphasizes the significance of secure 
mobile devices 

3. Software installation ease: Because of the appification 
[15] of mobile devices—that is, the fact that there is an app for 
nearly anything—new software may be loaded with ease 
through reputable app marketplaces. As a result, rogue apps 
can also proliferate quickly..  

4. 4. Linux kernel-based OS: The Linux kernel serves as 
the foundation for many contemporary mobile operating 
systems (OS), including Android. However, the Linux kernel 
was first created for desktop computers, and while features or 
information deemed innocuous on these platforms may not be 
so on mobile devices, they may pose a serious risk to privacy 
and/or security ([16]). Attack surface for cellphones, cloud 
computing systems, and smart cards.   

5. Last but not least, these devices have a plethora of 
functions and sensors that are absent from conventional 
platforms. Because mobile devices are inherently always-on 
and portable, connected, inherent input methods, etc.), these 
characteristics often enable damaging side-channel attacks. 
These sensors have also been used to take down 3D printers 
[21], [22], infer content from TV shows [20], and breach 
computer hard drives and keyboards [17]–[19]. All of these 
examples clearly demonstrate the immense capability of 
mobile devices. 

A greater awareness of side-channel attacks has emerged as 
a result of the previously listed key enablers. Most modern 
side-channel assaults are primarily non-invasive and depend on 
the execution of malicious software within the targeted 
environment. In light of these advancements, we note that the 
classification approach designed to examine side channel 
assaults on smart cards is no longer suitable for these modern 
attack scenarios and tactics. For this reason, side-channel 
assaults on mobile devices as well as other contemporary side-
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channel attacks cannot be systematically categorized using the 
current classification method. 

We bridge this gap in this work by developing a new 
classification scheme for contemporary side-channel assaults 
against mobile devices. As a result, we examine current side-
channel attacks and find similarities among them. The 
newfound understanding enables researchers to decide on 
future lines of inquiry and to counteract these attacks more 
broadly.  

2. Background 
 
In this section, we introduce the basics of mobile security, 

define the general notion of side-channel attacks, and we estab 

lish the boundaries between side-channel attacks and other 

attacks on mobile devices. We stress that side-channel attacks 

do not exploit specific software vulnerabilities of the OS or 

any specific library, but instead exploit available information 

that either leaks unintentionally or that is (in some cases) pub 

lished for benign reasons in order to infer sensitive information 

indirectly. Finally, we also discuss related work. 

 

A. A Primer on Smartphone Security  

 

Mobile devices, such as tablet computers and smartphones, are 

powerful multi-purpose computing platforms that enable many 

different application scenarios. Third-party applications can be 

easily installed in order to extend the basic function ality of 

these devices. Examples include gaming applications that 

make use of the many different sensors, office applica tions, 

banking applications, and many more. These examples clearly 

demonstrate that mobile devices are already tightly integrated 

into our everyday lives, which leads to sensitive data and 

information being stored and processed on these devices. In 

order to protect this information properly, modern mobile 

operating systems rely on two fundamental security concepts, 

i.e., the concept of application sandboxing and the concept of 

permission systems. For instance, on Android the underlying 

Linux kernel ensures the concept of sandboxed applications. 

Each application is assigned a user ID (UID), which allowsthe 

kernel to prevent applications from accessing resources of 

other applications. The permission system on the other hand 

allows applications to request access to specific resources out 

side of its sandbox, which typically includes resources that are 

considered as being sensitive or privacy relevant. Android also 

categorizes permissions depending on so-called protection lev 

els. The two important categories of Android permissions are 

normal permissions and dangerous permissions, respectively. 

While normal permissions are granted automatically during the 

installation procedure, dangerous permissions must be 

explicitly granted by the user. Other mobile operating systems 

such as Apple’s iOS rely on similar protection mechanisms. 

Besides these basic security concepts on the OS level, 

applications themselves rely on cryptographic primitives, cryp 

tographic protocols, and dedicated security mechanisms to 

protect sensitive resources. For instance, applications rely on 

encryption primitives to protect sensitive information being 

stored on the device or when transmitting data over the 

Internet. Another example of a dedicated security mechanism 

is a personal identification number (PIN) required to access a 

specific service such as a banking application.  

 

 

 

B. Side-Channel Attacks  

 

Although the above mentioned concepts are secure (or are 

typically considered as being secure) in theory, a specific 

implementation of such a mechanism is not necessarily secure 

in practice. Since side-channel attacks have been extensively 

used to attack cryptographic implementations, let us consider 

the following illustrative example. In an ideal world, an imple 

mentation of a cryptographic algorithm takes a specific input 

and produces a specific (intended) output. For example, an 

encryption algorithm takes the plaintext as well as crypto 

graphic key material to produce the ciphertext. However, in 

practice, an implementation of an encryption algorithm usu 

ally also “outputs” unintended information as a byproduct of 

the actual computations. Such unintended information leak age 

might be a different power consumption or a different 

execution time due to instructions being conditionally exe 

cuted depending on the processed data. Attacks exploiting such 

unintended information leaks are denoted as side-channel 

attacks and have been impressively used to bypass or break 

protection mechanisms such as encryption algorithms. 

Subsequently, we discuss the general notion of side-channel 

attacks. We distinguish between passive side-channel attacks, 

as in the example above, and active side-channel attacks. 

Passive Side-Channel Attacks: The general notion of a pas sive 

side-channel attack can be described by means of three main 

components, i.e., target, side channel, and attacker. A target 

represents anything of interest to possible attack ers. During 

the computation or operation of the target, it influences a side 

channel (physical or logical properties) and thereby emits 

potential sensitive information. An attacker who is able to 

observe these side channels potentially learns useful 

information related to the actual computations or operations 

performed by the target. Therefore, an attacker models possi 

ble effects of specific causes. Later on, careful investigations 

of observed effects can then be used to learn information about 

possible causes.  

 

Active Side-Channel Attacks: An active attacker tampers with 

the device or modifies/influences the targeted device via a side 

channel, e.g., via an external interface or envi ronmental 

conditions. Thereby, the attacker influences the 

computation/operation performed by the device in a way that 

allows to bypass specific security mechanisms directly or that 

leads to malfunctioning, which in turn enables possible attacks, 

e.g., indirectly via the leaking side-channel information or 

directly via the (erroneous) output of the targeted device. 

 

A target emits sensitive information as it influences specific 

side channels. For example, physically operating a smartphone 

via the touchscreen, i.e., the touchscreen input represents the 

target, causes the smartphone to undergo specific movements 

and accelerations in all three dimensions. In this case, one 

possible side channel is the acceleration of the device (a 

physical property), which can be observed via the embedded 

accelerometer sensor and accessed by an app via the official 

Sensor API.  

 

Differentiation From Other Attacks: Irrespective of whether an 

attacker is passive or active, we only consider side-channel 

attacks. Side-channel attacks do not exploit software bugs or 

anomalies within the OS or apps that, for example, allow to 

access the main communication channel directly. For example, 
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buffer overflow attacks allow to access the main communica 

tion channel directly (i.e., the main memory) and, thus, do not 

represent side-channel attacks.  

 

Similarly, we also do not consider other attacks that learn 

information that is available from the main channel. For exam 

ple, Luzio et al. [28] exploited Wi-Fi probe-requests, which 

contain the service set identifier (SSID) of preferred Wi-Fi 

hotspots in clear. These probe-requests allow mobile devices to 

determine nearby Wi-Fi hotspots in order to preferably connect 

to already known hotspots. These attacks do not represent side 

channel attacks as the learned information is directly available 

from the main channel.  

 

Furthermore, we also do not survey covert channels where two 

entities (e.g., processes) communicate over a channel that is 

not explicitly provided by the platform or the operating system. 

Although identified side channels can in general also be used 

as a covert channel, i.e., as a means to stealthily communicate 

between two processes whereby one process influences the 

side channel and the other one observes it, we do not explicitly 

survey covert channels such as [29] in this paper. Nevertheless, 

our newly introduced classification system can also be used to 

classify covert channels.  

 

C. Related Surveys 

 

 In this section, we discuss surveys on mobile security, as well 

as side-channel attacks on smart cards, PCs, cloud 

infrastructures, and smartphones.  

 

Surveys on Mobile Security: Most surveys on mobile secu rity 

primarily focused on malware in general, and many of these 

surveys only mention side-channel attacks as a side node. Enck 

[30] surveyed possible protection mechanisms beyond the 

standard protection mechanisms provided by Android. These 

include tools that analyze permissions and action strings 

(within the Android Manifest) to assess the risk of Android 

apps, policy-based approaches that allow a more fine-grained 

protection of Android apps, as well as static and dynamic code 

analysis tools to perform application analysis, which in turn 

allows to detect malware.  

 Polla et al. [31] surveyed threats and vulnerabilities 

(i.e., botnets, Trojans, viruses, and worms) with a focus on 

work published from 2004 until 2011. Suarez-Tangil et al. [32] 

and Faruki et al. [33] continued this line of research for the 

period from 2010 until 2013, and from 2010 until 2014, 

respectively.  

 Rashidi and Fung [34] surveyed techniques (e.g., 

based on static and dynamic code analysis) to cope with mal 

ware on mobile devices and Sadeghi et al. [35] surveyed tools 

and analysis techniques to identify malware. In addition, 

Sadeghi et al. provided a “survey of surveys” discussing 

surveys and their main contributions in more detail. We refer 

to their work for a more detailed investigation of mal ware 

analysis techniques and further literature on this topic. Tam et 

al. [36] surveyed mobile malware analysis techniques (static, 

dynamic, hybrid) as well as malware tactics to hinder analysis 

(obfuscation).  

 Surveys on Side-Channel Attacks: The survey of 

Tunstall [37] focused on smart card security, in particular side-

channel attacks against cryptographic algorithms. 

 Zander et al. [38] surveyed covert channels via 

computer network protocols, and Biswas et al. [39] conducted 

an in depth study on network timing channels (remote timing 

side channels) as well as in-system timing channels (focusing 

on hardware-based timing channels such as cache attacks) on 

commodity PCs. They surveyed timing channels according to 

their suitability for covert channels, timing side channels, and 

network flow watermarking (e.g., to de-anonymize Tor). 

 

Regarding cloud computing platforms, Ge et al. [7] and Szefer 

[40] surveyed microarchitectural attacks with a focus on cache 

attacks. Ullrich et al. [41] focused on network based covert 

channels and network-based side channels in cloud settings. 

Betz et al. [42] focused on covert chan nels and mentioned a 

few side-channel attacks in the cloud setting. 

 

The focus of our paper is on side-channel attacks against 

mobile devices. Surveys about this topic are quite scarce and 

consider specific types of side-channel attacks only. Xu et al. 

[43] surveyed attacks and defenses on Android at a broader 

scale and thereby provide a comprehensive overview of the 

research landscape. They considered system privilege 

escalation, issues in the permission model, side channels and 

covert channels (a high-level overview of exploits consid ering 

the accelerometer, the CPU cache, and the procfs), feature 

abuses, malware detection, and app repackaging. Hussain et al. 

[44] and Nahapetian [45] surveyed sensor-based keylogging 

attacks. However, a systematic survey and classi f ication of all 

existing categories of side-channel attacks on mobile devices 

does not exist so far. 

3. Local side-channel attacks  

 

In this section, we survey side-channel attacks that require a 

local adversary. Some of these attacks will show that the 

transition between local attacks and vicinity attacks is seamless 

as the distance between the victim (device) and the attacker 

can be increased, especially in case of some passive attacks.  

 

A. Passive Attacks  

 

We start with traditional side-channel attacks that aim to break 

insecure cryptographic implementations (of mathemati cally 

secure primitives). Besides, we discuss attacks that target the 

user’s interaction with the device as well as the user’s input on 

the touchscreen, i.e., attacks that result from the inherent nature 

of mobile devices.  

 

Power Analysis Attacks: The actual power consumption of a 

computing device or implementation depends on the processed 

data and the executed instructions. Power analysis attacks 

exploit this information leak to infer sensitive information. As 

the name suggests, the power consumption, typically measured 

as the voltage drop across a resistor inserted in the supply line, 

serves as the side channel. State-of-the-art printed circuit board 

designs (PCB-designs), including multi-layer routing as well as 

surface mounted devices (SMD), and packaging techniques 

(e.g., ball-grid array) make it hard to access the appropriate 

power supply lines in modern smartphones without permanent 

modifications. Therefore, in contrast to smart cards, measuring 

the power consumption became less relevant for side-channel 

attacks targeting smartphones. Depending on whether a single 

measurement trace or multiple traces are required, we 
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distinguish between simple power analysis (SPA) attacks and 

differential power analysis (DPA) attacks, as defined by 

Kocher et al. [2]. SPA attacks rely on the interpretation of 

power traces in order to reveal, for example, the sequence of 

executed instructions, which allows to break implementations 

where the executed instruc tions depend on secret data. 

However, the power consumption also depends on the 

processed data, although the variations are smaller. Therefore, 

DPA attacks rely on statistical investi gations of multiple traces 

in order to infer information about the processed data.  

 

Attacks: Messerges et al. [48] exploited the power con 

sumption of a smart card to attack the Data Encryption 

Standard (DES) algorithm. Hardly any side-channel attacks 

using a similar setup for measuring the power consumption 

targeting smartphones are published. Nevertheless, a coarse 

grained power-consumption monitoring of smartphones allows 

to identify running apps, as demonstrated by Yan et al. [49].  

 

Electromagnetic Analysis Attacks: Exploiting electromagnetic 

emanations is another method of attacking the power leakage 

of computing systems. These emanations are typically easier to 

obtain because the power line is generally not accessible 

directly. These attacks are typically referred to as differential 

power analysis attacks, regardless of whether the power trace 

is received directly from the power line or through 

electromagnetic emanations. In this regard, it's also important 

to note that aiming the measurements at a particular spot above 

the chip may enhance the signal-to-noise ratio, depending on 

the equipment being used (EM probes for catching the 

electromagnetic radiation). Using spatial information allows 

for a reduction in the number of measures needed for an attack 

to be successful. 

 

Attacks: On mobile devices, conventional side-channel attacks 

that take advantage of smart cards' electromagnetic emissions 

have also been used. Elliptic Curve Cryptography (ECC) and 

the Advanced Encryption Standard (AES) were both shown to 

be vulnerable to attacks by Gebotys et al. [50] on Java-based 

PDA software implementations. Subsequently, the Elliptic 

Curve Digital Signature Algorithm (ECDSA) implementation 

of Android's Bouncy Castle was attacked by Belgarric et al. 

[53], Goller and Sigl [52], and Nakano et al. [51] against the 

RSA and ECC implementations of the default crypto provider 

(JCE) on Android smartphones. Genkin et al. [54] similarly 

targeted the CommonCrypto implementation of ECDSA on 

iOS and the OpenSSL implementation of ECDSA on Android. 

 

Differential Computation Analysis: Embedding the secret key 

inside the software implementation in a way that makes it 

impossible for an adversary to extract it—even if they have 

access to the source code—is the fundamental concept behind 

white box crypto systems. As a result, the algorithm and the 

key are combined in such a way that the key is concealed 

inside the code and difficult to find. According to the white-

box assault concept, the adversary controls the device and the 

execution environment in its entirety. 

 

Attacks: Binary instrumentation can be used to monitor and 

manage the intermediate state of white-box crypto systems, as 

demonstrated by Bos et al. [55]. As a result, the apparatus 

enables accurate program execution monitoring and allows for 

the profiling of program activity through the observation of, 

among other things, the intermediate state and read/write 

memory accesses. Bos et al. classified these attacks as 

differential computation analysis (DCA) attacks due to their 

resemblance to DPA attacks. However, DCA assaults do not 

have to contend with measurement noise like DPA attacks do. 

Even while attacks against white-box crypto implementations 

haven't been used on mobile devices yet, these devices can also 

be targets of this type of attack..  

 Smudge Attacks: The touchscreen on mobile devices is the 

most widely used input mechanism; users swipe and tap the 

screen with their fingers. Users always leave traces of their 

fingerprints and smudges on touch screens because of this 

intrinsic feature. 

 

Attacks: According to Aviv et al. [56], some interactions with 

the smartphone or touchscreen-based devices in general can 

result in side-channel attacks. More precisely, unlock patterns 

can be deduced by forensic examination of smudges—oily 

fingerprint residues—on the touchscreen. Even when the 

phone has been cleaned and the When placing the phone in the 

pocket, smudges seem to stay most of the time. Smudges are 

therefore quite persistent, which raises the possibility of 

smudge attacks. Zhang et al. [57] have provided follow-up 

work that takes into account an attacker using fingerprint 

powder to infer keypad inputs. Additionally, an examination 

using thermal cameras has been conducted into the heat traces 

left on the screen as a result of finger touches [58].  

 

Shoulder Surfing and Reflections: Touchscreens of mobile 

devices optically/visually emanate the displayed content. Often 

these visual emanations are reflected by objects in the envi 

ronment, such as sunglasses and tea pots [59], [60].  

 

Attacks: Maggi et al. [61] observed that touchscreen input can 

be recovered by monitoring the visual feedback (pop-up 

characters) on soft keyboards during the user input. Therefore, 

they rely on cameras that are pointed directly on the targeted 

screen. Raguram et al. [62], [63] observed that reflections, e.g., 

on the user’s sunglasses, can also be used to recover input 

typed on touchscreens. However, the attacker needs to point 

the camera, used to capture the reflections, directly on the 

targeted user. Subsequently, they rely on computer vision 

techniques and machine learning techniques to infer the user 

input from the captured video stream. Xu et al. [64] extended 

the range of reflection-based attacks by considering reflections 

of reflections. Although, they do not rely on the visual feed 

back of the soft keyboard but instead track the user’s fingers on 

the smartphone while interacting with the device. By 

increasing the distance between the attacker and the victim, 

e.g., by relying on more expensive and sophisticated cameras, 

some of these attacks might as well be considered as vicinity 

attacks.  

 

Hand/gadget Movements: A lot of input techniques on 

different devices rely on the user using her hands and fingers to 

control the gadget. For example, while using their fingers to 

operate the device, users typically hold it in their hands.  

 

Attacks: Shukla et al. [65] suggested using hand and finger 

gestures as well as reflections to infer inputted PIN inputs 

without actually aiming the camera at the intended screen. 

While Yue et al. [67] presented an attack where the input on 

touch-enabled devices may be predicted from a video of a 
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victim tapping on a touch screen, Sun et al. [66] monitored the 

backside of tablets during user input and observed small 

motions that can be utilized to infer keystrokes.  

 

Once more, these attacks might also be classified as vicinity 

attacks due to the increased distance between the attacker and 

the victim, indicating the smooth transition between local and 

vicinity attacks for these kinds of attacks.  

 

B. Active Attacks  

 

Additionally, an active attacker modifies the target, its input, or 

its surroundings in order to directly circumvent security 

measures or to watch information leakage through the target's 

aberrant behavior. Active assaults always presume that the 

attacker is in possession of the device (at least temporarily), 

whereas passive attacks seamlessly switch between local and 

nearby attackers.  

 

The origins of active attacks against cryptographic 

implementations can be traced back to the work of Boneh et al. 

[68] (also known as the Bellcore attack), who exploited 

random hardware flaws to attack RSA crypto systems, 

particularly those based on the Chinese Remainder Theorem 

(CRT . Subsequently, Biham and Shamir [69] introduced the 

term differential fault analysis (DFA) attacks and showed that 

the secret key of symmetric primitives can be recovered by 

introducing faults and noticing variations in the output 

ciphertext. These assaults' fundamental goal is to solve 

algebraic equations using both valid and erroneous outputs.  

 

Clock/Power Glitching: In the past, it has been demonstrated 

that clock signal variations, such as overclocking, are a useful 

technique for fault injection on embedded systems. An external 

source of clock is one of the requirements for this attack. 

Because most microcontrollers used in smartphones have an 

internal clock generator, clock tampering is challenging. In 

addition to tampering with the clock, deliberate changes to the 

power supply provide another way to introduce faults. Most 

microcontroller platforms allow for power-supply 

manipulation with only small hardware modifications.  

 

Attacks: Skorobogatov and Anderson [75] published the first 

optical fault-injection attacks in 2002, aimed at an 8-bit 

microcontroller. Many optical fault-injection attacks, primarily 

aimed at smart cards or low-resource embedded devices, have 

been reported in the years that followed, largely as a result of 

their work (e.g., [76] and [77]). The application of optical fault 

injection on contemporary microprocessors seen in 

smartphones is challenging due to the growing number of 

metal layers on top of the silicon, the shrinking feature size 

(small process technology), and the high decapsulation effort.  

 

Temperature Variation: When a device is operated outside of 

its designated temperature range, malfunctioning behavior may 

result. When a device is heated above the maximum 

recommended temperature, memory cell defects may occur. 

The pace at which RAM disappears once a device is powered 

off can be affected by cooling it down (RAM remanence 

effect).  

 

Attacks: An AVR microprocessor was the victim of thermal 

fault attacks described by Hutter and Schmidt [78]. Their 

ability to successfully attack an RSA implementation on a 

designated microcontroller demonstrates the practicability of 

this approach. In contrast, FROST [79] is a program that uses 

cold-boot techniques to get disc encryption keys from RAM on 

Android devices. Here, the writers profit from the longer 

period of validity that data in RAM has following a power 

outage because of low temperature.  

 

Differential Computation Analysis: The white-box approach, 

as previously stated, is predicated on the attacker having 

complete control over the execution environment. This also 

implies that by changing intermediate values throughout the 

process, the attacker may generate incorrect or flawed outputs.  

 

Attacks: It has been shown by Sanfelix et al. [74] that fault 

injection assaults are also a viable tactic for attackers in the 

white-box model. The attacker can alter data while the 

program is running or the execution's control flow since she 

has complete control over the execution environment and the 

binary that is being executed. As with other fault attacks, the 

goal is to break the cryptographic implementations by looking 

for variations between the binary's normal and erroneous 

outputs. 

  

NAND Mirroring: Data mirroring is the process of replicating 

data storage across several sites. These methods enable the 

restoration of a prior system state in addition to being utilized 

for the recovery of crucial data following disasters.  

 

Attacks: By encrypting data, the Apple iPhone safeguards 

users' privacy. Therefore, several keys that can be used to 

safeguard the data on the device are derived using a hardware-

based key and a passcode. Brute-force attempts must be made 

on the attacked device because these keys are derived using a 

specialized hardware-based key. Additionally, by 

progressively lengthening the interval between incorrectly 

entered passcodes until the phone is erased, brute-force efforts 

are discouraged. Regarding the FBI v. Apple case, 

Skorobogatov [80] shown that the passcode may be brute-

forced by using NAND mirroring to reset the phone's state. 

Given that the attacker actively modifies (resets) the device's 

state, it is obvious that this strategy also constitutes an active 

attack. 

  

4. CONCLUSIONS 

 
Considering the immense threat arising from side-channel 

attacks on mobile devices, a thorough understanding of infor 

mation leaks and possible exploitation techniques is 

necessary. Based on this open issue, we surveyed existing 

side-channel attacks and identified commonalities between 

these attacks in order to systematically categorize all existing 

attacks. With the presented classification system we aim to 

provide a thor ough understanding of information leaks and 

hope to spur further research in the context of side-channel 

attacks as well as countermeasures and, thereby, to pave the 

way for secure computing platforms. 
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