
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46029 | Page 1

Toward Transparent and Modular DApps: A Web3 SaaS Prototype for

Token Lifecycle Management

Priyanshu P. Wadke Harshal H. Gangawane

Department of Computer Engineering Department of Computer Engineering

Datta Meghe College of Engineering Datta Meghe College of Engineering

Navi Mumbai, Mumbai, India Navi Mumbai, Mumbai, India

priyanshu.wadke.comp@gmail.com harshal.gangawane.comp@gmail.com

Shantanu S. Bhise Dr. Chandrashekhar M. Raut
Department of Computer Engineering Department of Computer Engineering

Datta Meghe College of Engineering Datta Meghe College of Engineering

Navi Mumbai, Mumbai, India Navi Mumbai, Mumbai India

shantanubhise2015@gmail.com chandrashekhar.raut@dmce.ac.in

Abstract- The evolution of blockchain and Web3 technologies

has paved the way for decentralized application platforms that

enable transparent, tamper-proof transactions without relying

on centralized servers. However, existing solutions such as

Gitcoin and Giveth are either too complex or unsuitable for

modular deployment in educational and lightweight

environments. This paper proposes MetaSuite, a role-based,

blockchain-driven Software-as-a-Service (SaaS) platform that

enables users to create, transfer, and donate tokens while

allowing an administrator to securely withdraw funds. Built

entirely on the Ethereum blockchain using Solidity smart

contracts, MetaSuite operates without a backend and integrates

wallet-based authentication via MetaMask and Ethers.js. The

platform ensures transparent fund management through on-

chain event logging and role-based access controls. Performance

evaluations on the Ethereum HoleskyTestnet demonstrate the

system’s reliability, gas-efficiency, and real-time responsiveness.

By eliminating backend dependencies and emphasizing

traceability, MetaSuite serves as a minimalistic yet scalable Web3

solution suitable for academic, experimental, and small-scale

real-world deployments.

Keywords—Blockchain, Web3, Smart Contracts, Ethereum,

MetaMask, Tokenization, SaaS, Ethers.js, Decentralized

Applications.

I.Introduction

Decentralized applications (DApps) are redefining how software

services are designed and delivered in the Web3 era. Unlike

traditional SaaS platforms that rely on centralized servers and

databases, DApps leverage blockchain networks to ensure

transparency, immutability, and peer-to-peer interaction. Ethereum,

with its robust support for smart contracts and developer tooling, has

become the de facto platform for DApp development [6].

The advent of Web3 has shifted focus toward building systems that

prioritize user autonomy, modularity, and role-based access. Projects

such as Gitcoin and Giveth demonstrate the potential of token-based

fundraising, but their complex architectures and reliance on backend

APIs limit their adoption in academic and small-scale contexts [4],

[5]. Furthermore, these platforms often lack native mechanisms for

user role separation, such as administrator-only fund withdrawal or

audit-level logging [8].

Recent literature emphasizes the benefits of modular and reusable

smart contract design through paradigms like Smart Contract as a

Service (SCaaS), advocating for scalable blockchain systems that are

easy to maintain and extend [3]. Yussupov et al. further argue that a

serverless DApp architecture one that operates without any

centralized backend — is both viable and increasingly important in

decentralized ecosystems [6].

This paper presents MetaSuite, a decentralized SaaS platform

designed to manage the full token lifecycle — creation, transfer,

donation, and administrative fund withdrawal — in a fully frontend-

driven, backend-free Web3 environment. Built using Solidity,

Next.js, and Ethers.js, and secured via MetaMask wallet

authentication, MetaSuite demonstrates how a simple but effective

smart contract system can support secure, role-based financial

interactions without compromising on decentralization, traceability,

or user accessibility.

The platform was deployed and tested on the Ethereum

HoleskyTestnet, and its performance was evaluated based on gas

usage, functional correctness, and role-specific validations. The

results indicate that MetaSuite is a viable architecture for transparent,

modular, and scalable DApps tailored for educational use,

experimental prototyping, and lightweight real-world deployment.

A. Motivation

While blockchain technology has matured significantly, most

existing Web3 platforms are built with complex infrastructures,

making them difficult to use or adapt in educational or prototype

environments. Platforms like Gitcoin or Giveth offer robust features

for token-based donations, but they often rely on backend systems,

lack modularity, and offer no role-specific access [4], [5]. For

students, educators, and early-stage developers, there is a need for a

platform that offers transparent, minimal, and hands-on interaction

with smart contracts and token operations.

B. Objective

This project aims to develop a modular Web3 SaaS tool that:

• Enables token creation, transfer, and donation

• Allows admin-only access for fund withdrawals

• Uses MetaMask for wallet-based authentication

[7]

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46029 | Page 2

• Operates without a backend, running entirely

through a frontend + smart contract stack [6]

• Supports gas-efficient, auditable, and transparent

operations on Ethereum [3], [6]

C. Applications

The system is suitable for:

• Educational institutions teaching blockchain

development

• Prototype funding platforms for NGOs or

research groups

• Community reward systems based on token

economics

• Transparent crowdfunding DApps for

academic or social causes [4], [10]

Its modular architecture allows easy extension into future domains

such as NFTs, DAO governance, or multi-token integration.

II.Literature Survey

Blockchain platforms have gained widespread attention for their

ability to support decentralized, secure, and auditable systems. In

particular, smart contracts have enabled automation and trustless

interactions in various domains, ranging from finance to identity

management. Several studies have explored the use of smart contracts

for delivering modular services, token economies, and Web3-native

user experiences.

Sun et al. [3] introduced the concept of Smart Contract as a Service

(SCaaS), proposing a framework where reusable and composable

smart contracts can power next-generation Web3 platforms. Their

emphasis on modularity directly informs the design goals of

MetaSuite, which uses a clean separation of concerns between token

management functions and user roles.

Yussupov et al. [6] presented a comprehensive discussion on the

serverless nature of smart contracts, arguing that fully frontend-

driven architectures — those without centralized backends or

databases — are both feasible and desirable in DApp development.

This perspective aligns with the core architecture of MetaSuite, which

runs entirely in the browser via MetaMask and Ethers.js.

In the context of decentralized fundraising, platforms like Gitcoin and

Giveth have popularized the model of token donations and open-

source funding [4], [5]. However, these systems often require

backend infrastructure, offer limited customizability, and lack fine-

grained role-based access controls — a gap that MetaSuite seeks to

fill.

Nguyen et al. [8] proposed PenChain, a blockchain-based service

provisioning system that uses smart contracts to enforce penalties and

ensure service-level agreement compliance. Their work demonstrates

how smart contracts can go beyond fund transfer, serving as

programmable tools for logic enforcement and access control —

concepts adapted in MetaSuite through admin-only withdrawal

permissions and event logging.

Other studies have addressed complementary domains: Almajed et al.

[1] examined NFT-based pricing in Web3 SaaS systems; Bamakan

and Far [2] built trustworthy digital twin platforms using blockchain

automation; and Song [4] explored token economies in creator-

centric Web3 environments. These studies highlight the expanding

range of blockchain-enabled applications, but few of them present

generalizable, educational platforms for token lifecycle

experimentation.

In contrast, MetaSuite offers a lightweight, open-ended environment

for token creation, transfer, donation, and secure fund management,

aimed specifically at academic, experimental, and minimal-

dependency contexts.

III.Proposed System

The proposed platform, MetaSuite, is a role-based, decentralized

Web3 SaaS prototype that enables secure token lifecycle operations

through Ethereum smart contracts. It is designed to be fully modular,

backend-independent, and verifiable through on-chain execution and

logging.

A. Architectural Component

The system architecture consists of four tightly integrated layers:

➢ Frontend Interface (Next.js)

This layer provides a responsive user interface that lets users interact

with the smart contract. The frontend is built using Next.js, a React-

based framework that supports client-side routing and dynamic

content updates. All interactions, such as submitting token details or

initiating transfers, are handled through Web3-enabled UI forms.

➢ Wallet Integration (MetaMask)

MetaMask serves as the user’s blockchain identity provider. It allows

users to sign transactions, authenticate with their Ethereum addresses,

and interact securely with the DApp. The application dynamically

detects the connected wallet address to identify the user role (admin

or general user) and conditionally renders controls based on access

rights [7].

➢ Smart Contract Layer (Solidity)

The core logic resides in Solidity smart contracts deployed to the

Ethereum blockchain. Key functions include:

• createToken (): Deploys a new ERC-20 token

with a custom name, symbol, and supply

• transferToken (): Sends tokens between wallet

addresses

• donate (): Accepts token/ETH donations into the

contract

• withdraw (): Allows only the admin to transfer

ETH to their address

Access control is enforced using require statements, and every

transaction emits an event such as TokenCreated, Transfer,

DonationReceived, or FundsWithdrawn for full traceability [3], [8].

➢ Blockchain Layer (Ethereum HoleskyTestnet)

The HoleskyTestnet is used to simulate real blockchain deployment

in a cost-effective and public setting. All transactions, contract states,

and event logs are permanently stored and can be audited through

explorers like Etherscan [1].

B. Logic & Execution Flow

Each function in the smart contract is designed to align with role-

based access:

• Users can call functions like createToken,

transferToken, and donate, all of which are permission less

and wallet-bound.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46029 | Page 3

• Admins are hardcoded into the contract at

deployment. Only the admin wallet can call sensitive

methods like withdraw ().

• If a non-admin attempts a restricted action, the

contract throws an error and reverts the transaction.

The frontend dynamically reads on-chain state using

ethers.Contract.read() functions and updates the UI accordingly.

When a transaction is triggered, ethers.Contract.write() is used to

broadcast the action, and MetaMask prompts the user to sign it.

All funds and tokens remain on-chain at all times, and contract

balances are queried in real time using Ethereum JSON-RPC methods

[6].

C. Transaction Flow Explanation

The platform follows a typical transaction flow model that ensures

decentralization and role-based control:

➢ Wallet Connection

o User opens the MetaSuite frontend and

connects their wallet via MetaMask.

o The connected address determines user

role (admin or general user).

➢ Token Creation

o User fills in token details (name,

symbol, supply) and submits.

o The contract deploys the token to the

blockchain; the creator receives the full supply.

➢ Token Transfer

o Using Ethers.js, a user can transfer

tokens to another wallet.

o Transaction is signed in MetaMask and

broadcast to Ethereum.

➢ Donations

o User donates tokens or ETH to the

smart contract.

o Donation is confirmed on-chain, and

event logs are emitted.

➢ Activity Monitoring

o All users can view logs, balances, and

token stats in real-time.

o UI updates reflect blockchain state,

synced through Ethers.js calls

D. Technology Stack

Layer Tool Purpose

Smart

Contract

Solidity On-chain logic and role

enforcement [6]

Web3

Interface

MetaMask Wallet-based auth &

transaction signing [7]

Frontend Next.js Responsive UI for user

interaction

Ethereum

Library

Ethers.js Blockchain communication

from frontend [6]

Network HoleskyTestnet Deployment & testing

environment [1]
Table 1. Technology Stack

IV.Evaluation & Result

To validate the functionality and reliability of MetaSuite, the smart

contracts were deployed on the Ethereum HoleskyTestnet. The

system was tested across all key modules, including token creation,

transfer, donation, and admin-only withdrawal.

A. Deployment and Functional Testing

The smart contract was deployed using Remix IDE, and all

functionalities were triggered through a Next.js frontend connected

via MetaMask. Each transaction was tracked through Etherscan,

verifying:

• Successful contract execution

• Accurate gas consumption

• Proper wallet authentication

• Real-time UI state updates

Example: A token created with the symbol MTK was successfully

minted and distributed to the creator’s wallet. Transfers and donations

executed correctly, and the admin was able to withdraw ETH.

B. Gas Efficiency

Measured average gas usage for key operations:

Operation Avg. Gas Used

Create Token 130,000

Transfer Token 65,000

Donate Token 70,000

Fig. 1 System Architecture

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46029 | Page 4

Table 2 Gas Efficiency

C. Role Validation

To ensure role-based access worked correctly, multiple tests were

performed:

Table 3. Role Validation

D. On-Chain Logging and Transparency

Each smart contract action emitted a corresponding event

(TokenCreated, Transfer, DonationReceived, FundsWithdrawn),

ensuring all activity was:

• Logged publicly on Etherscan

• Visible in the frontend dashboard

• Available for third-party audits

E. Results

Action Tested Role
Expected

Outcome
Result

Create Token
User/

Admin
Token created Success

Transfer Token User Transfer complete Success

Donate Token User Contract balance Success

Withdraw Funds Admin ETH transferred Success

Withdraw (non-

admin)
User

Access denied

(revert)
Blocked

Fig. 2 MetaMask Account (Admin)

Fig. 3 MetaMask Account (User)

Fig. 4 Home Page Screen 1

Fig. 5 Dash Board with Transaction Logs

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46029 | Page 5

F. Performance Summary

MetaSuite was found to be:

• Accurate in role validation

• Efficient in gas use

• Modular and easy to extend

• Transparent in logging and fund flow

The platform meets its core goal: providing a transparent, backend-

free, token management system for educational and experimental use

V.Conclusion and Future Work

This paper proposed MetaSuite, a role-based, modular, and

fully decentralized Web3 SaaS platform for managing token

lifecycles on the Ethereum blockchain. Developed using

Solidity, MetaMask, Ethers.js, and Next.js, the system

eliminates backend dependencies while enabling secure and

transparent token interactions through smart contracts. The

platform specifically addresses challenges in existing tools

such as Gitcoin and Giveth by offering lightweight, backend-

free architecture and fine-grained role control [4], [5].

A. Summary of Findings

The platform was successfully deployed and validated on the

Ethereum HoleskyTestnet, where it demonstrated:

• Accurate role validation logic through

admin-only withdrawals

• Efficient execution of token creation,

transfer, and donation operations

• Consistent on-chain event logging enabling

auditability and traceability

• Minimal gas costs, confirming the system’s

suitability for low-resource contexts

The entire application stack — consisting of Solidity,

MetaMask, Ethers.js, and Next.js — worked in sync to deliver

a secure and scalable DApp that performs all core operations

without relying on a centralized server.

The system also ensured that each transaction emitted

corresponding events, which were auditable via Etherscan,

supporting the platform’s commitment to transparency.

Compared to other platforms like Gitcoin, which rely on

staking, governance tokens, oracles, and API layers [4],

MetaSuite remains minimalistic, yet functionally rich.

B. Implications of the Study

From an academic and developer perspective, this study shows

that:

• Full-stack decentralization is possible with a

minimal architecture

• Smart contract-based role enforcement can

replace traditional access control systems

• Educational and lightweight deployments

can benefit from modular, frontend-driven

blockchain apps

• Emerging developers can leverage this

architecture as a teaching, prototyping, or demo

platform

This work proves that backend-free, role-based DApps can be

implemented with a limited toolchain and still achieve

enterprise-grade transparency and role separation. By

enforcing admin-only functions at the smart contract level and

maintaining a fully public activity log, MetaSuite helps

mitigate centralized vulnerabilities common in donation and

tokenized platforms.

Beyond the technical contribution, this research has social

implications — particularly in how on-chain governance and

transparency can restore trust in fundraising, grant allocation,

and peer-to-peer exchanges. Additionally, MetaSuite's

simplicity and modularity offer strong pedagogical value,

making it suitable for academic programs, hands-on

workshops, and blockchain development curricula.

C. Future Research Directions

Several promising areas have emerged from this study that

deserve further investigation:

• Governance Models: Integration of DAO

structures with token-holder voting and multi-admin

layers.

• NFT Support: Extension of smart contracts

to support ERC-721/1155 tokens for NFT-based

utility.

• Cross-Chain Compatibility: Deployment

across multiple EVM-compatible chains to explore

interoperability and gas optimization.

• Scalability: Migration to Layer-2 platforms

(e.g., Arbitrum, Polygon) to enhance throughput and

reduce costs.

• Security Audits: Applying formal

verification tools to evaluate contract robustness

under attack vectors.

D. Conclusion

This study contributes to the blockchain development

landscape by demonstrating a transparent, accessible, and

functionally complete Web3 SaaS platform designed with

real-world use cases and academic learning in mind. It

confirms that modular, frontend-driven DApps can meet core

functional and security requirements without backend logic —

thus advancing the goals of decentralization, accessibility, and

scalability in blockchain research and practice.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46029 | Page 6

REFERENCES

[1] R. Almajed, A. Abualkishik, and A. Ibrahim, “Forecasting NFT

Prices on Web3 Blockchain Using Machine Learning to Provide

SAAS NFT Collectors,” Fusion: Practice and Applications, 2023.

[Online].

→ Cited in Future Scope – NFT pricing & SaaS relevance — pp. 4–

5

[2] M. Bamakan and S. B. Far, “Distributed and Trustworthy Digital

Twin Platform Based on Blockchain and Web3 Technologies,” Cyber

Security and Applications, Elsevier, vol. 3, 2024.

→ Cited in architecture modeling and smart contract trust — pp. 3–5

[3] J. Sun, J. Yan, and K. Z. Zhang, “Smart Contract as a Service:

Architecture, Applications, and Research Issues,” IEEE Internet

Computing, vol. 25, no. 2, pp. 66–73, Mar. 2021.

→ Cited in SCaaS model & modular design relevance — pp. 67–70

[4] Y. Song, “The European Creator Economy’s Web3.0 Business

Model,” Decentralized Economy Journal, vol. 2, no. 1, pp. 23–35,

2022.

→ Cited for Gitcoin/Giveth-like platforms and token use — pp. 28–

31

[5] S. Sarkar, “Centralized Intermediation in a Decentralized

Economy: Risks and Opportunities,” arXiv preprint

arXiv:2302.09561, 2023.

→ Cited for limitations of existing Web3 ecosystems — pp. 2–4

[6] D. Yussupov et al., “On the Serverless Nature of Blockchains and

the Tiny Data Challenge in Smart Contracts,” arXiv preprint

arXiv:2007.16029, 2020.

→ Cited in architecture design & backend-free implementation — pp.

3–6

[7] M. Ahmad, “Integration of IoT Devices via DApps Using Solidity

and MetaMask,” Academia.edu, 2017.

→ Cited for wallet-based smart contract interaction — pp. 5–7

[8] N. Nguyen, H. Ngo, and M. Vuong, “PenChain: Penalty-Aware

Smart Contract Service Provisioning,” IEEE Access, vol. 11, pp.

54677–54690, 2023.

→ Cited in access control and admin-only logic — pp. 54682–54685

[9] Y. Cheng, “Web 3.0: Concept, Content and Context,” in Digital

Transformation with Blockchain Technology, Springer, 2024, pp.

115–134.

→ Cited in Web3 architecture and evolution — pp. 120–124

[10] J. Kölbel, “Next Generation Business Ecosystems Using

Decentralized Tokens and Smart Contracts,” CORE: Blockchain

Innovation Series, vol. 3, no. 1, 2023. → Cited in modularity, token

design, and DAO outlook — pp. 18–21

http://www.ijsrem.com/

