

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Towards building a comprehensive evaluation framework for Human Computer Interaction with a specific focus on AutoML

Sundaraparipurnan Narayanan, AI Tech Ethics, sundar.narayanan@aitechethics.com

Abstract

The rapid advancement of Automated Machine Learning (AutoML) has revolutionized the field of Artificial Intelligence (AI), enabling the automation of complex machine learning workflows. However, the increasing autonomy of AutoML systems has highlighted the critical importance of Human-Computer Interaction (HCI) principles in ensuring their usability, transparency, and trustworthiness. This paper proposes a comprehensive evaluation framework for HCI in AutoML, focusing on five key dimensions: Contracts and User Development, User Interface, Interaction and Experience Design, Information Architecture, Human Augmentation Factors Design, and Care and Responsibility. The framework emphasizes the need for transparent disclosures, intuitive interfaces, structured information presentation, user empowerment, and ethical considerations, including fairness and accountability. By prioritizing user-centered design, the framework aims to bridge the gap between AutoML's technical capabilities and diverse user needs, fostering trust and collaboration between humans and AI systems. The integration of HCI principles is crucial for realizing the full potential of AutoML, ensuring that these powerful tools are developed and deployed in a manner that benefits all users and society. As AutoML continues to evolve towards greater autonomy, the nature of human interaction is expected to transform from direct operation to strategic supervision and collaborative partnership, leveraging the complementary strengths of humans and machines. The proposed framework serves as a foundation for creating transparent, userfriendly, and trustworthy AutoML systems that balance automation with user understanding and control, paving the way for a future where AI systems are not merely efficient but also equitable, safe, and truly beneficial for all.

CCS CONCEPTS • Human-centered computing \sim Human computer interaction (HCI) \sim HCI design and evaluation methods \sim Walkthrough evaluations

Additional Keywords and Phrases: Human Computer Interaction, AutoML Evaluation

Introduction

Human-computer Interaction (HCI) is a multidisciplinary field that combines knowledge from computer science, psychology, cognitive science, and social sciences to create interactive computing systems that are both useful and usable (*Human-Computer Interaction*, 2003) (Olson

& Olson, 2002). It focuses on designing, evaluating, and implementing interfaces that facilitate effective communication between users and computers, with the goal of improving user experience and system efficiency (Fallman, 2007) (Kheder, 2023). HCI has given rise to numerous sub-disciplines, including Human Computation (HCOMP), human-AI collaboration (HAI), human-robot interaction (HRI), and HITL (Human-in-the-loop) (Lakkshmanan et al., 2024). HCI research has evolved from its initial focus on functionality to encompass user- friendliness, learnability, efficiency, enjoyment, and emotional aspects of interaction (Kheder, 2023). This shift has led to the development of various methodologies and approaches, such as user-centered design (UCD), usability testing, and prototyping techniques (Kheder, 2023). Additionally, emerging technologies such as augmented reality, virtual reality, and gesture- based interfaces have expanded the scope of HCI research (Kheder, 2023) (Kosch et al., 2023).

In the context of AutoML, HCI focuses on understanding the 'how' and 'why' of human interaction within these frameworks, which is crucial for optimal system design and identifying both opportunities and risks presented by increasing machine autonomy (Khuat et al., 2022).

Automated Machine Learning (AutoML) automates aspects of the ML application workflow. Initially, HCI was not

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

considered fundamental to AutoML, which primarily aims to operate with minimal human interaction. Currently, however, there is a shift back towards incorporating HCI as a necessity to support technical users who configure and control semi-AutoML packages, including interactions involving basic operations such as selection, value entry, exploration, and reconfiguration, with visualization naturally enhancing understanding and engagement. Key challenges in the present include building trust, ensuring explainability, mitigating bias for fairness, and increasing transparency, supported by emerging tools such as Data Cards for dataset documentation. The future trajectory points towards greater AutoML autonomy (AutonoML), shifting human roles from direct operation to supervision, auditing, and ultimately collaboration with the system as a partner. Designing for this future collaboration, guided by frameworks such as Human-Centered AI (HCAI), requires optimizing interactions for shared understanding, trust, and leveraging complementary human and machine strengths (Khuat et al., 2022).

AutoML aims to make machine learning accessible to non-experts and improve efficiency (Karmaker ("Santu") et al., 2021). Despite the aim of full automation, AutoML systems still require human intervention to be practically applicable (Crisan & Fiore-Gartland, 2021). Humans are involved in various stages of the ML workflow, providing inputs, feedback, or oversight (Mathewson, 2019) (Khuat et al., 2022). Human involvement in critical steps of AutoML includes understanding domain-specific data, defining prediction problems, and creating suitable training datasets (Karmaker ("Santu") et al., 2021). This human-machine interaction is crucial, yet current AutoML systems often lack transparency, making it difficult for users to understand and trust the decision-making process. Many current AutoML tools have become black-box systems, obscuring their internal working. This development highlights the need for further research into human-computer interaction (HCI) to address this weakness. Hence, the fields of AI and HCI share common roots, particularly in early work on conversational agents (Li et al., 2020). Recent advancements in deep learning have revolutionized AI, creating new opportunities for machines and humans to interact.

The field is increasingly recognizing the importance of a human-centered approach to AutoML by recognizing the need to address user interaction, considering the diverse roles, expectations, and expertise of humans involved (Lindauer et al., 2024). Human-computer interaction in AutoML is evolving towards factors including domain knowledge and context awareness, evaluation and interpretation, handling uncertainities and novelty, collaboration and oversight, interface design, interaction modalities, and visualization (Khuat et al., 2022). A human-centered paradigm promotes the collaborative design of ML systems that integrate the complementary strengths of human expertise and AutoML methodologies, partly triggered by an increasing awareness of the social and ethical (including trust, explainability, transparency, fairness, accountability, and causality) implications of ML technologies (Lindauer et al., 2024)(Khuat et al., 2022).

With the above, it is clear that trust and transparency have emerged as critical factors in HCI, particularly in the context of AI-enabled systems. Studies have shown that user trust is influenced by socio-ethical considerations, technical features, and user characteristics, highlighting the need for tailored approaches to system design (Bach et al., 2022). User-centric design remains a cornerstone of HCI, with frameworks such as the User-Centered Design Process (UCDP) prioritizing users' goals and characteristics throughout the design process (Kheder, 2023). Such an approach extends to explainable AI (XAI), where human-centered XAI focuses on addressing the distinct needs of non-expert end users, emphasizing usability, trust, and safety (Veitch & Alsos, 2021). Explainability and interpretability have gained prominence, particularly in the context of AI-powered systems. Social Transparency (ST) has been proposed as a sociotechnically informed perspective that incorporates socio-organizational context into explaining AI-mediated decision-making, potentially improving trust calibration and decision- making processes (Ehsan et al., 2021). Usability and human factor engineering continue to play crucial roles in HCI. Researchers have developed innovative frameworks that combine expert cognitive walkthroughs with user surveys to evaluate website UI/UX, thereby providing actionable insights for design improvements (Whaiduzzaman et al., 2023). Additionally, the integration of HCI principles into healthcare systems has shown promise in enhancing patient safety and optimizing processes (Mishra et al., 2023). The expanding scope of HCI encompasses governance, accountability, and risk management. As intelligent systems (including AutoML) have become more prevalent in high-stakes domains, there is a growing need to address moral and ethical concerns and develop transparency frameworks to enhance trust and acceptance (Vorm & Combs, 2022). This broader view of HCI emphasizes the importance of considering not only technical aspects but also the social, ethical,

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

and organizational implications of human-system interactions.

Framework for evaluation of Human Computer Interaction

Given the above context, this paper proposes a consistent framework approach towards establishing a consistent framework for human—computer interaction evaluation. The effective integration of human—computer interaction (HCI) principles is essential for the successful development and deployment of AI systems in general and AutoML systems in particular, particularly in enabling non-expert users to engage with complex AI. The framework contains five dimensions: (1) contracts and user development that aims at setting expectations, clarifying responsibilities and limitations, and enabling the user; (2) user interface, interaction, and experience design that enables intuitive, usable, and engaging interfaces; (3) information architecture that supports organizing, simplifying, and visualizing complexity for the user; (4) human augmentation factors design that empower users and enables control; and Care and Responsibility that enables ethical, safe, and accountable AI. The details of each dimension are provided below.

Contracts and user development

This dimension focuses on establishing a clear understanding and managing the expectations between the user and the AI system. It encompasses the design of transparent disclosures regarding AI system capabilities and limitations, fostering responsible data use through mechanisms such as models and data cards, and providing comprehensive user training and guidance. Furthermore, it defines user responsibilities, including their roles in system oversight and providing constructive feedback, which are vital for safety and continuous improvement. For AutoML, this dimension ensures that users understand what an automated system can or cannot do, promoting appropriate usage and managing the inherent complexities of machine learning.

Acceptable Uses and Limitations: HCI plays a role in clarifying what AI systems are capable of doing and, importantly, what they are *not* capable of doing, to set appropriate expectations for users (Amershi et al., 2019). Disclosures of system limitations are part of the important design principles. Understanding these limitations is also crucial for safety, especially in safety-critical domains (Raulf et al., 2023) (Retzlaff et al., 2024).

Evaluation	General description	AutoML specific	Fairness context
criteria		description	
Acceptable	Verify whether the system	Confirm that AutoML	Validate that AutoML clearly
Uses Disclosure	clearly	explicitly outlines the types of	communicates its
	communicates its	machine learning problems and	appropriate use cases, particularly
	intended and	deployment scenarios for	where fairness implications are
	acceptable uses to users.	which it is designed and	critical, and discourages its use in
		recommended.	contexts where fairness cannot be
			assured.

Misuse	Evaluate whether the Confirm that AutoML includes Ascertain that the system has
Prevention	system incorporates mechanisms to prevent users express contractual constraints or
	safeguards to from applying automated built-in safeguards to prevent
	prevent its use outside of models inappropriately or inmisuse of the tool for unfair or
	its intended context. contexts beyond their validated discriminatory activities.
	scope.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Providing information regarding the use of user data for training: Ensuring visibility in ML models and datasets is a challenge that has received increasing attention (<u>Pushkarna et al., 2022</u>). While not always framed as a 'contract,' transparent design and the provision of documentation are key to clarifying information on data use and provenance. Tools such as Model Cards (<u>Raulf et al., 2023</u>) and Data Cards (<u>Pushkarna et al., 2022</u>) are emerging as non-technical measures to enhance the explainability and responsible deployment of intelligent systems by specifying relevant details regarding model training, intended usage, and documenting datasets.

_							
	Evaluation criteria	General descrip	otion	AutoML	specific	Fairness context	
				description			
7	Fransparency &	Clarity	and	Supports	usei	Clarify if the transpa	rency and
	Disclosure	accessibility	of	understand	how their data w	illdisclosure highlight	fairness
		information a	bout dat	abe used	in training t	heimplications of the da	ata use for
		usage for mode	el training.	autoML too	ol for performance	e model training	

User training, guidance, and instructions for use: Responsible AI implementation requires a strong focus on user training, guidance, and clear instructions. (Li et al., 2024) emphasized that 'communication, education, and training for users' are pivotal for building trustworthy AI. Tailoring explanations to different users (experts vs. non-experts) based on their information needs, context, and domain knowledge is crucial (Raulf et al., 2023). Some studies have also explored teaching user strategies to interact effectively with systems that have limited capabilities (Chromik & Butz, 2021).

Evaluation	General de	escription		AutoML	specific	Fairness cont	ext
criteria				description			
User training	Assess	the	quality,	Evaluate how	effectively users	Examine	whether
	comprehe	nsiveness,	and	are trained	to understand	training	materials
	delivery	methods	of		AutoML	adequately	educate
	training	pı	ograms	workflows,	interpret	users about	potential

	designed to e	educate user	s on	automate	d		model	algorithmic	biases	in
	system fun	ctionality	and	choices,	and	make	informed	AutoML	outputs	and
	responsible use	e.		decisions	rega	rding m	odel	provide m	ethods for	bias
				selection	and d	leploym	ent.	detection ar	nd mitigation	n.
Guidance an	dMeasure th	e availal	oility,	Assess	the	clarity	of in-	Determine	wheth	ner
support	accessibility,		and	system g	uidan	ce for n	avigating	guidance	materia	als
	relevance of o	ongoing guid	lance	complex	Au	toML	features	offer clear	instruction	s on
	and support re	sources for	users	understar	nding		system	how to idea	ntify and ad	dress
	during system	interaction		recomme	ndati	ons,	and	unfair outco	omes or	
				troublesh	ootin	g issue	s related	discriminat	ory impacts	that
				to autom	ated r	nodel b	uilding.	might arise	from Auto	ML-
								generated m	nodels.	

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Instructions of	ofEvaluate the clarity,C	Consider how well the	Examine whether
use	conciseness, and in	nstructions explain the	instructions explicitly
	completeness of expliciting	mplications of different	highlight scenarios
	instructions provided to users to A	AutoML configurations, the	Wherefairness onsiderations
	operate the AI systemm	neaning of various metrics,	are paramount and guide
	effectively and safely.	nd the steps for safely	users on steps to ensure
	d	leploying automated models.	equitable treatment across
			different demographic
			groups.
Tailoring	Examine the system's ability to A	Assess how AutoML	Evaluate if
Explanations	adapt the level of detail and	explanations are tailored for	explanations about fairness
	complexity of explanations tob	ooth expert data scientists and	issues are presented in a
	suit the diverse informationne	on-expert domain users,	way that is understandable
	needs and technical	onsidering their varying	and actionable for all
	backgrounds of different userum	inderstanding of machine	relevant user groups,
	groups. le	earning concepts.	regardless of their technical
			expertise

User responsibilities when using the tool: While explicit user contracts are rarely mentioned, some sources discuss human responsibilities in interactions, particularly in overseeing autonomous systems and ensuring safety (Khuat et al., 2022). GDPR implies user rights to contest outcomes, which requires a system design that supports such opportunities. Design choices that allow users to provide feedback also address implicit responsibilities in contributing to system improvement (Retzlaff et al., 2024) (Ashtana et al., 2018).

are their oML
their
their
$_{0}$ ML
01,11
ss or
ю.
vided
lance
s to
that
atory
stem
such
N d n n

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

User Interface, Interaction and Experience Design

This dimension addresses the core sensory and interactive elements of user engagement with the AutoML system. It prioritizes the creation of intuitive Graphical User Interfaces (GUIs) that facilitate seamless interaction and ensure high usability for diverse user groups, including non- experts. Key considerations include visual explanation interfaces, hierarchical information presentation, and the integration of 'nudges' and clear metrics/visualizations to guide users through complex processes. The goal is to design an experience that is efficient, satisfying, and minimizes cognitive load, making sophisticated AutoML accessible and manageable.

UI/UX Design: HCI is fundamentally the design, evaluation, and implementation of interactive computing systems (Lakkshmanan et al., 2024). In AI/ML, this means focusing on the UI, interaction, and user experience (UX) (Ashtana et al., 2018) (Khuat et al., 2022) (Pop & Raţiu, 2024). For AutoML specifically, GUIs are common in industry, supporting interactive functions such as selection, exploration, reconfiguration, and value entry (Khuat et al., 2022). Designing for user experience is pivotal for the adoption and acceptance of ML technologies (Ashtana et al., 2018), specifically by non-experts.

Evaluation	General description	AutoML specific	Fairness context
criteria		description	
User Interface	Assess the visual layout,	Evaluate how the AutoML GUI	Examine whether the UI
(UI) Design		supports interactive functions	
	_	such as selection, exploration,	Γ
		reconfiguration, and value entry	
		for various model parameters	_
		and datasets.	discernible to the user.
User Experience	Measure the overall	Consider how the UX design in	Access whether the IIV
(UX) Design		AutoML facilitates the adoption	
(OA) Design	efficiency	*	guides users to identify and
		technologies by non- experts,	
		making complex processes feel	II I
		approachable	ethical model development
			process.
Interaction	Evaluate how users engage	Determine if the interaction	Investigate whether
Design	,	design in AutoML enables	interaction patterns allow
	actions,	*	users to easily compare
		different model architectures,	fairness
	E	· · · · · · · · · · · · · · · · · · ·	outcomes across
		performance evaluations	different model
	between humans and AI.		versions or data subsets

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Learnability	Assess how easy it is for newEval	ate whether the AutoML	Consider whether the
	users to accomplish basicinter	face is designed for rapid	learnability of fairness-
	tasks and for experiencedlearr	ing, allowing users to	related features is high,
	users to become proficient quic	dy grasp automated	lenabling users to quickly
	over time. proc	esses and customize them	understand how to assess
	effec	tively.	and improve model
			fairness.

Usability: Usability is a key factor in the user experience of ML technologies. As AI applications become integral to our daily routines, the usability of these systems has become more important. From virtual assistants to autonomous vehicles, the ease with which users can interact and effectively utilize AI technologies is crucial. Usability in AI systems encompasses intuitive interfaces, clear instructions, and efficient task completion, ensuring that users can leverage these technologies without unnecessary complexity or confusion (Ashtana et al., 2018). Problems in system usability can arise from user interfaces (Mishra et al., 2023). Usability evaluation methods, such as formal usability evaluation complementing heuristic evaluation, are part of the iterative user-centered design process, including domain-specific environments (Rundo et al., 2020) (Acemyan & Kortum, 2012).

	General description	AutoML specific description	Fairness context
criteria			
	Evaluate whether the system's interface is easy to understand	Assess whether the AutoML interface allows users to	Examine whether the interface clearly and
	and navigate without prior		intuitively presents fairness
			metrics and potential
	documentation.	interpret automated	biases,
		results.	making them easy to grasp.
Error Prevention	Design the system to prevent	Implement mechanisms in	Provide safeguards within
_	common errors and provide	1	AutoML to prevent the
	_	misconfigurations or data input	
	when errors do occur.	errors and offer clear steps for	
			guidance on how to rectify
			fairness-related errors.
User Control	Ensure that users have	Allow users to easily pause,	Enable users to control and
	appropriate control over the	_	adjust fairness constraints
	system's functions and can		or re-evaluate models
	I	processes and explore alternative	
	processes.		criteria within the AutoML
			system.

Transparency: Transparency is a consistently reported key design principle for AI tools, and it remains a key element in enhancing human–computer interaction. Transparency is vital for building trust and is often linked to explainability and understandability (Hoque et al., 2024). Transparency can involve clear agent self-identification, disclosure of system limitations, and explanations. GDPR requirements also highlight the need for transparency in algorithmic

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

systems (Veale et al., 2018). However, many current AutoML tools obscure their internals, acting as black-box systems that hinder transparency (Khuat et al., 2022).

Evaluation	General description	AutoML specific	Fairness context
criteria		description	
Internal process	Make the internal	Provide visibility into the	Examine if the interface clearly
visibility	workings and logic of the	automated search space, the	and intuitively presents fairness
	AI system	evaluation criteria used, and	metrics and potential biases,
	accessible and	the intermediate	making them easy to grasp.
	comprehensible to users.	steps taken by AutoML to	
		arrive at a solution.	
Self-	Clearly identify the Al	Explicitly state when AutoML	Examine if there is a clear
Identification	system as an automated	is making automated	communication as to how
	agent, distinguishing its	decisions	AutoML considers and reports
	actions from human	regarding model	on fairness during automated
	interactions.	selection, hyperparameter	processes, rather than
		tuning,	presenting it as a human
		or data transformations.	decision.

Human Factors Engineering: Human factors engineering is a multidisciplinary field contributing to HCI. It considers human capabilities and limitations in system design to enhance performance, safety, and reliability (Pop & Raţiu, 2024). In the context of AI and HCI, human factors and cognitive science insights are crucial for designing effective human-AI interactions, particularly in safety-critical contexts (Raulf et al., 2023) (Chromik & Butz, 2021).

Evaluation criteria	General description	AutoML specific	Fairness context
		description	
Human	Validate that the	Verify that AutoML too	
Capabilities and	system design aligns wi	haccurately accommodate th	einterfaces present
Limitations	human	cognitive load of	fairness information in a way
	cognitive, perceptual, ar	dunderstanding automate	dthat minimizes cognitive bias
	physical	choices and limitations	and supports accurate human
	capabilities, mitigating	in	assessment of equity.
	human	interpreting complex M	L
	limitations.	metrics.	
Performance	Verify that the	Confirm that AutoML	Validate that users can
Enhancement	interaction betwee	neffectively enhances use	refficiently analyze fairness
	human and AI effective	yperformance by	trade-offs, enabling easier
	improves overall system	automating repetitive task	s, selection of models that
	efficiency, accuracy, an	daccelerating mode	elbalance performance with
	task completion	development, and	equitable outcomes.
	_	suggesting optimal	
		solutions.	

Volume: 09 Issue: 10	Oct - 2025	SIIF Rating: 8.586	ISSN: 2582-3930
VUIUIIIE. UP ISSUE. IU I	ULL - 4U43	SIII Naulie, 0.300	13311. 4304-3730

Situational	Validate that users rec	eive	Confirm	that	AutoML	Verify	that	fairne
Awareness Support	the necessary informa	tion	provides		clear	consideration	ons	are
		to	dashboards		and	presented i	n a way	that help
	understand ti	he	visualizations		that	users maint	tain high	situation
	current state of the	ΑI	accurately	conve	y the	awareness	regard	ling th
	system and	its	progress of p	processe	s, model	model's equ	uitable p	erformand
	environment.		performance,	and	resource	across subg	roups.	
			utilization.					

User Engagement: User engagement is a critical element in designing human-centric ML systems (Ashtana et al., 2018). Continuous user engagement and feedback loops are part of a user-centric ethical design paradigm that considers the need for ethics considerations. Iterative engagement, when supported by interfaces allowing feedback loops, domain knowledge injection, and model refinement, amplifies the human augmentation principle in AI-driven tools, and thereby, its quality, productivity, and trust.

Evaluation	General description	AutoML specific	Fairness context
criteria		description	
Continuous	Verify that the system	Confirm that AutoML	Validate that users can easily
Feedback Loops	provides accessible and	interfaces effectively support	provide feedback on perceived
	intuitive mechanisms for	continuous	unfairness or bias in AutoML
	users to offer ongoing	feedback loops for users to	outputs, thus contributing to
	feedback on functionality	comment on automated	ethical system improvements.
	and	model	
	performance.	suggestions, usability, or	
		overall workflow.	
Domain	Examine whether the system	Verify that AutoML tools	Confirm that users can
Knowledge	allows users to actively	facilitate the injection of	effectively provide domain
Injection	contribute their specific	domain knowledge by users	knowledge to highlight or
	expertise and domain	to guide	address potential fairness issues
	knowledge to	automated search	specific to their
	refine AI processes or	processes or refine the	application context or user
	models.	generated mode	el groups.

models.	generated	model	groups.
	pipelines.		

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Nudges: 'Nudges' guides users through structured processes to help them understand AI behavior (<u>Buçinca et al., 2021</u>) or suggesting new configurations for model refinement (<u>Khuat et al., 2022</u>). Consideration should be given to the cognitive effort and processes involved in users' interpretation of explanations. This includes the following:

On-screen Disclosures: Disclosures are mentioned as part of transparency, such as disclosing system capabilities and limitations (Amershi et al., 2019), and may include references to outcomes that the model/tool are not certain about.

Warnings, Notifications/Alerts: AI systems can have unpredictable behaviors. These sources imply the need for interfaces that handle such situations, although specific warnings or alerts are not detailed. In the context of autonomous driving, external HMI designs to convey messages and warnings to road users have been discussed (Chen, 2022).

Metrics/Visualization/Reports: Visualization via GUI components is a natural way to foster human understanding and interactivity in AutoML (Khuat et al., 2022). Interactive visualization is a key enabling technology for Human-Centered AI (HCAI) tools (Hoque et al., 2024), as it enhances comprehension, diagnosis, and iterative improvement of ML models. Furthermore, features to generate or download reports/models enhance the value of user engagement (Khuat et al., 2022).

Evaluation criteria	General description	AutoML	specific	Fairness conte	ext
		description			
Nudges	Validate that nudges	Verify that	nudges in	Confirm tl	hat nudges
	effectively guide users	AutoML	effectively	effectively	highlight
	through	guide users to	wards optimal	potential	fairness
	processes, aiding in	configurations,	explain	trade-offs	or
	understanding AI		automated	recommend ac	djustments to
		· ·	or suggest	improve	equitable
	suggesting beneficia	pathways	for model	outcomes	across
	actions.	refinement.		groups.	
On-screen Disclosures	Confirm that	Verify that	AutoML on-	Validate	that
	disclosures clearly	screen	disclosures	disclosures cl	learly present
	communicate system	explicitly	state	any known lin	nitations or
	capabilities, limitations,	automated	system	uncertainties	in
	and	limitations	or	AutoML's	fairness
	uncertainties directly	uncertainties	regarding		
	within the user	model perfor	rmance, data	evaluation	or
	interface.	quality,	or search	mitigation cap	pabilities.
		completeness.			

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Warnings,	Examine	whether	Check	that	AutoML	Verify	that t	he svs	stem
_			effectively			-		•	
	_	•	potential is:			_	•		_
	warnings, notif		μ			generated			
			convergenc	e fail		_			hibit
	alerts	for	unusual		model	statistical	lly	signifi	cant
	unpredictable	behaviors	behaviors		during	unfairnes	s or bia	ıs.	
	or critical situa	ations.	automated 1	training.					
Metrics/ Visualization/	Evaluate if	metrics,	Confirm	that	AutoML	Validate		tŀ	nat
Reports	interactive vis	ualizations,	provides		intuitive	visualiza	tions a	and rep	orts
		and	metrics,	int	eractive	clearly	presen	t fair	ness
	downloadable	reports	visualizatio	ns	(e.g.,	metrics	(e.g.,	dispa	arate
		foster	performanc	e curve	es, feature	impact a	nd equa	ilized o	dds)
	human unc	lerstanding,	importance		and	and all	ow		for
	diagnosis,			downl		easy			
	interaction with		reports			comparis			
			understandi	ng		demogra	•	groups	or
			iterative		model	model ve	ersions.		
			improveme	nt.					

Information Architecture

This dimension focuses on the structural organization and presentation of information within an AutoML system to enhance user comprehension and navigation. It dictates how complex data and processes are categorized, linked, and displayed. Key elements include well-structured navigation systems, logical content hierarchies (e.g., progressive disclosure to prevent information overload), and effective information visualization techniques. A well-designed information architecture ensures that users can easily find, understand, and interact with the relevant details of their AutoML tasks, thereby building mental models of the system's operation.

Navigation System: Effective navigation is implicit in discussions on UI design, exploration, and content hierarchy (Khuat et al., 2022). Designing intelligent UIs is critical for supporting human-guided AutoML (Khuat et al., 2022). Successful UIs are associated with a well-defined HCI structure based on principles and guidelines. The UI design should factor in human understanding and control. User interfaces must facilitate user selection, exploration, and reconfiguration actions.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Evaluation criteria	General description	AutoML specific	Fairness context
		description	
Navigational Clarity	Verify that the navigation	Confirm that the AutoML	
			navigation system allows
	r	guides users through various	•
	1 -	stages of automated model	access fairness-
	users to move through the	•	related settings, metrics,
	AI application.	ingestion to deployment.	or bias reports
			within the AutoML tool.
11		Check that AutoML	
1	, ,	ε	navigation system
	effectively enables users	•	supports users in exploring
	•	algorithms, hyperparameter	
		spaces, or alternative	
	· · · · · · · · · · · · · · · · · · ·		sensitive attributes or model
		suggestions.	configurations to understand
	options.		impacts.
Human	Validate that the navigation		Confirm that the navigation
	•	navigation intuitively maps to	
	enhance human	, ,	
	_	machine- learning process,	
	-	giving users a sense of control	
	user control over AI	and progress.	the fairness aspects of
	processes.		automated model
			development.

Content Hierarchy: Content hierarchy is the organizational structure of information that can help users navigate complex AI systems more effectively. It involves prioritizing information based on importance and presenting it in layers, allowing users to focus on high-level concepts before delving into details and avoiding overwhelming the user with too much information at once (Yu, 2023). Progressive disclosure complements the content hierarchy by enabling users to access information gradually, as needed. Progressive disclosure is particularly valuable in the development of AI systems that require user trust and transparency, as it can alleviate concerns about information overload and enhance understanding through step-by-step information delivery (El Ali et al., 2024). Content hierarchy enables AI systems to be made more approachable and easier for users to engage with, thereby promoting transparency and trust (Xu et al., 2022) (Nazar et al., 2021) Content hierarchy and progressive disclosures are vital for fostering user trust and ensuring that the systems are adaptable and user-friendly (Bach et al., 2022).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Evaluation criteria	General description	AutoML specific description	Fairness context
Information	information is clearly prioritized based on importance, first presenting critical details	information about	warnings, critical biases, or major fairness trade-offs are prioritized and displayed prominently to the user.
Information Presentation	complex information is organized into clear, digestible layers to	model details, data transformations, and automated search processes in digestible layers, thereby allowing users to delve	presented in layers, starting

Information Visualization: Information visualization is fundamental to making complex AI processes understandable to humans (Le et al., 2020). Visualizations are crucial for understanding, diagnosing, and improving ML models (Retzlaff et al., 2024) (Khuat et al., 2022). Simple, familiar, and understandable visualizations are often preferred, especially for domain experts who are not visualization experts. Visualizations can bridge the gap between human knowledge and AI insights (Pop & Raţiu, 2024) (Hoque et al., 2024) and are particularly suitable for users with limited technical background.

Evaluation criteria	General description	AutoML specific	Fairness context
		description	
Understandability and	Verify that visualizations are	Confirm that AutoML	Validate that
Simplicity	simple, familiar, and easy	provides simple and familiar	fairness-related
	for users to	visualizations	visualizations are
	comprehend, thereby	for understanding	presented simply
	avoiding unnecessary	automated model	and clearly, even for
	complexity.	performance, hyperparameter	users with a limited
		impact, or data	statistical background.
		transformations.	

Diagnostic Capability			Examine whether
		· *	visualizations help users
	_	seusers to effectively diagnose	_
		orissues in automated model	_
	areas for improvement with		or unfairness in the
	AI processes or models.	convergence problems, o	_
			ymodel's behavior
		concerns.	across
			different groups.
Interactivity and	Evaluate whether	Validate that AutoMI	Check whether
Exploration	visualizations are		fairness visualizations
		tousers to interactively explore	
	explore data and model		
	characteristics dynamically.	evaluate feature importance	
		and compare various	~ · · ·
		automated pipeline stages.	metrics, or the
			impact of different
			fairness algorithms.
Bridging Knowledge	eExamine if visualization	nsVerify that AutoMI	Confirm that fairness
Gaps	effectively translate comple	exvisualizations bridge the gap	visualizations effectively
	AI insights into a form th	atbetween automated MI	communicate the
	aligns with huma	aninsights and the user's	snature of bias and
	knowledge and intuition.	domain	disparate impacts in a
		knowledge, making	way that resonates with
		complex model	human ethical
		decisions accessible.	understanding.
•	Confirm that	-	Validate that
Non-Experts	visualizations are		fairness visualizations
	· ·	ordesigned to be highly suitable	e are
	users with limited technic	alfor non-expert users	tailored for non-
	or machine learning	ng abstracting	experts, allowing
	backgrounds.	technical complexity while	ethem to grasp ethical
		retaining critical	implications without
		information.	needing deep
			usa alaina la annina
			machine learning
			expertise.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Avoiding	Cognitive	Confirm	that	the	desig	n of	Verify	ť	hat	Αu	ıtoML's	Validate		tha	at
Biases				info	ormati	on	presenta	tior	n of	rul	es,	fairness	inforn	nation	is
		representa	ation		av	voids	explana	tion	s,		or	presented	in a	way t	hat
		common			hum	an	automat	ed	reco	nme	endations	minimizes	the 1	risk of	
		cognitive	bias	es	that c	could				is	carefully		users		
			1	ead		to		Ċ	lesign	ed	to	misinterpr	eting l	oiased	
		misunders	standi	ngs.			prevent		misir	nterp	pretations	8	data	or	
							owing	to	use	r (cognitive	making		biase	d
							biases.					decisions	thems	elves.	

Content Reliability: Content reliability, or trustworthiness, is closely linked to transparency, explainability, and the perceived accuracy of the AI system's outputs (Khuat et al., 2022) (Pop & Raţiu, 2024). A careful design of how information (such as rules or explanations) is represented is needed to avoid misunderstandings due to human cognitive biases (Pop & Raţiu, 2024). Highlighting ambiguous predictions can help users assess the trustworthiness of models (Hoque et al., 2024).

Evaluation criteria	General description	AutoML specific description	Fairness context
Highlighting Ambiguity/Uncertainty	system explicitly highlights ambiguous predictions or uncertainties in its	AutoML highlights scases where its automated predictions are suncertain or where the	ambiguity or uncertainty in its fairness assessments, such as when data for certain subgroups are scarce.
Perceived Accuracy Outputs		sperceive AutoML's generated models and predictions as accurate	perceive the fairness

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

					cases.			dependable.
Consistency	of	Verify	that	all	Confirm		that	Validate that fairness- related
Information		presented	infor	mation	,AutoML	consis	tently	information, definitions of
		explanations	,	and	applies		and	protected attributes, and bias
		rules	re	main	presents		its	mitigation strategies are
		consistent	acro	OSS	automated	ru	ıles,	consistently applied and
		different		system	nexplanatio	ns	for	presented throughout the
		components	and	ove	rmodel c	hoices,	and	AutoML workflow.
		time.			performan	ce m	etrics	;
						acı	oss	
					different	iteration	is or	
					projects.			
Data Quality		Validate		that	Verify th			
		information			r			highlights any quality issues
		sources and	d qua	lity is	informatio	n abou	t the	or biases within the training
		clearly c	ommu	nicated	lquality of	the data	used	data that could impact the
		to			for autor	nated r	nodel	fairness and reliability of the
		underpin		the	training,	enha	ncing	generated models.
		reliability of	conte	nt.	content re	liability.		

Human Augmentation Features

This dimension integrates principles from human factor engineering to optimize the collaborative relationship between humans and AutoML systems, thereby augmenting human capabilities rather than merely automating tasks. It encompasses designing for iterative engagement, allowing users to inject domain knowledge, refine models, and provide continuous feedback throughout the machine learning pipeline. This includes the development of iterative interpretability and explainability (XAI) features to make AI decisions transparent. Critical aspects also involve providing users with the ability to download reports, models, and benchmarks, empowering them with control, and enabling human oversight and override capabilities, especially in safety-critical contexts.

Iterative Engagement with Tool, Data, and Model/Automation: Iterative engagement is one of the core human augmentation principles in AI-driven tools (Khuat et al., 2022). This involves designing systems to support continuous feedback loops and allowing users to inject domain knowledge or refine models iteratively. Human involvement can occur throughout the entire ML pipeline(Theis et al., 2023). Stakeholder engagement is iterative because ML models are produced/examined, AutoML settings are reconfigured, and search/production is rerun. It is also nonlinear, allowing stakeholders to skip steps or revisit previous phases (Khuat et al., 2022). Continuous refinement and human-in-the-loop paradigms offer advantages over fully automated approaches, enabling users to inject domain knowledge, provide feedback, and iteratively refine models (Chromik & Butz, 2021). HITL involves integrating human input during an agent's learning process, allowing iterative updates and fine-tuning based on human feedback (Retzlaff et al., 2024).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Evaluation criteria	General description	AutoML specific description	Fairness context
Iterative Model Refinement	supports a cyclic process in which user input and AI outputs are continuously refined,	searches, or selectingdifferent pipeline components based on observed	enables iterative refinement of models specifically targeting fairness, allowing users to improve equitable outcomes
Human-in-the- Loop (HITL) Integration	process, leading to	integrates human input throughout the ML pipeline, allowing iterative updates and fine-tuning of automated model building based on user	mechanisms within AutoML allow human input to directly inform and
	system's workflow is flexible, allowing users to skip steps, revisit previous phases, or diverge from a strictly linear progression.	exploration, allowing users to skip or revisit automated steps (e.g., data preprocessing and model selection) based on evolving needs.	nonlinearly engage with fairness evaluation, allowing them to revisit data, model choices, or mitigation techniques as new biases are
Human Augmentation Principle	engagement design		engagement within AutoML
	productivity, and trust in AI-driven tools.	control over automated processes.	resolve fairness issues, leading to more robust and trustworthy ethical outcomes.

Iterative Interpretability and Explainability: Explainability (XAI) is a widely discussed concept at the nexus of AI and HCI, as it enables people to understand AI decisions (Chromik & Butz, 2021). Different types of explanations can be integrated into automated learning systems, such as visual and textual explanations (Khuat et al., 2022). Explainable AI must be designed to express helpful explanations while avoiding misunderstandings due to typical human cognitive biases. Explainability has additional feedback effects in enhancing the performance and reliability of ML solutions when human-in-the-loop collaboration is integral (Khuat et al., 2022). Explainable AI methods can make an agent's decision-making process transparent and interpretable (Retzlaff et al., 2024). This refers to providing explanations for a model's decisions, predictions, and actions. Explainability must be understood from the perspectives of human cognition

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

and emergent human-machine cognitive systems (Khuat et al., 2022). The iterative improvement of explanations based on human feedback is a promising approach (Khuat et al., 2022).

Evaluation criteria	1	AutoML specific description	Fairness context
Understandability of Al Decisions	explanations enable users to accurately understand the rationale behind AI decisions, predictions,	provides explanations tha allow users to accurately understand why specific models were chosen	Validate that texplanations clarify fairness-related decisions made by AutoML, such as why a particular bias mitigation technique was applied.
Variety of Explanation Types	explanations (e.g., visual and textual) are integrated to cater to diverse user needs and	integrates various explanation types, such as visual representations of the model architecture or textua summaries of feature	fairness issues, including
Transparency of Decision-Making		This verifies that AutoML's XAI methods	Ensure that explanations make the
Process	make the AI agent's decision-making process transparent and	clearly reveal the rationale and inner workings behind the automated selection and optimization of machine learning models.	making process within AutoML transparent,
Iterative Explanation Improvement	system supports iterative improvement of explanations based on continuous	Validate that AutoML allows for the iterative refinemen of its explanations of automated processes or mode choices based on user queries and feedback.	tactively incorporates human feedback to iteratively improve the clarity and leffectiveness of its

Feedback Exchange on Functionality or Performance: Feedback exchange is a key principle that enables users to provide inputs on system functionality and performance. Eedback can be used during model training to push the model to align its knowledge with human decisions or by learning through imitation (Theis et al., 2023). Human feedback is crucial for refining AI models and can lead to improved model quality, productivity, and trust (Khuat et al., 2022).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Designing AI systems as collaborators means considering feedback in both directions (AI understanding human intention and human understanding AI state). Effective feedback exchange mechanisms, facilitated by transparent and communicative AI, play a pivotal role in achieving successful AI-HCI integration, enhancing user perceptions, and ensuring ethical AI adoption ((Sundar & Lee, 2022) (Guzman & Lewis, 2019).

Evaluation criteria	General description	AutoML specific description	Fairness context
User Input or	Verify that the system	Confirm that AutoML allows	Validate that users can
Functionality/	provides clear and	users to provide input on the	easily submit feedback
Performance	accessible channels for	effectiveness of its automated	regarding the fairness-
	users to submit feedback	model building, search	related functionality of
	on its overall functionality	efficiency, or generated model	AutoML or the
	and performance.	performance.	perceived performance of
			bias- mitigation features.
Alignment with	Evaluate whether	Check that AutoML	Examine whether user

Human Decisions	user feedback is leverages human feedback feedback, particularly on
	effectively utilized to alignduring automated training or fairness, is
	the AI model's knowledgerefinement to align its generated effectively incorporated to
	or models more closely with thealign AutoML-generated
	decisions with human desired outcomes or human models with human
	intentions and expert judgments. ethical standards and
	domain expertise. equitable decision-
	making.
Bidirectional	Examine whether the This verifies that AutoML not Confirm that AutoML
Feedback	system supports only receives human feedback communicates how user
Mechanisms	feedback exchange in both but also provides clearfeedback on fairness
	directions, communication back to the user impacts model adjustments
	allowing AI to understand regarding how their input and
	human intention and influences automated model provides transparent
	humans to understand Alchoices or search results. insights into AI's
	state. understanding of
	fairness objectives.
	Validate that the impact of Verify that AutoMLExamine whether
	user feedback on the Altransparently indicates how user AutoML clearly
Impact	system's adjustments or inputs, such as preference for demonstrates how user
	future behaviors is certain model types or metrics, feedback
	communicated to the user. influence subsequent regarding bias or fairness
	automated model concerns has led to specific
	recommendations. changes in the model or
	automated pipeline.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Download Reports, Models and Benchmarks: The feature to download reports, models, and benchmarks from AI tools serves as a significant human-computer interaction component by empowering users with control over outputs. This allows users to examine a specific ML pipeline, compare it with challenger models, and provide performance metrics. Such features to download models and benchmarks support processes for trust-building. It allows technical stakeholders to inspect, control, and manage the learning process (Khuat et al., 2022). The ability to download models and benchmarks also aligns with the principles of transparency and accountability, thereby fostering a sense of control and understanding, which are crucial for building trust in digital interactions (Zhang et al., 2024). It also allows users to independently validate the outcomes, assuring the reliability and consistency of outputs empowering users to perceive it to be a partner in decision-making rather than a black box technology (Balcombe & De Leo, 2022).

Evaluation criteria	General description	AutoML specific description	Fairness context
Feature Availability & Functionality	•	features to download	includes direct and functional features for downloading fairness reports, bias
	empowers users with direct control over accessing and	1 '	
Comparison	enable users to thoroughly	users to	downloadable outputs facilitate detailed comparison of fairness metrics across different

Human Oversight and Override: Maintaining human oversight and the ability to control or override autonomous functions is essential, particularly in safety-critical domains. Human- centered AI (HCAI) and collaborative paradigms emphasize the importance of human involvement in AI systems. Human-in-the-loop (HITL) approaches incorporate human oversight mechanisms into AI models, ensuring that humans maintain control and the ability to intervene. Human controllers play a crucial role in collaborating with and overseeing system performance and safety. The design of trustworthy autonomous systems should support high levels of human oversight and situational awareness (Khuat et al., 2022). This is achieved through interfaces that facilitate oversight and override capabilities. In safety-critical applications, prioritizing the safety of human operators and enabling on-the-fly guidance from humans can mitigate dangerous actions (Theis et al., 2023).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Evaluation criteria	General description A	autoML specific	Fairness context
	do	escription	
	Verify that the systemC		Validate that AutoML allows
_	design consistently supports in	-	users to effectively oversee
* *	a high level of humansı	•	fairness metrics and bias
	oversight over autonomous	•	
	functions.		ethical alignment.
		model	
		election, training, and	
	d	eployment processes.	
Override	Evaluate whether the C	Check that AutoML offers	Examine whether users can
Capability	system provides clear,ex	xplicit override functions	easily override AutoML's
	easily accessible, andal	llowing users to halt,	decisions that might
	effective mechanisms form	nodify, or reject automated	compromise
	human users to intervene		fairness, for instance, by
	and override autonomoussi	uggestions or pipeline	forcing a specific bias
	actions.	onstruction.	mitigation technique.
Collaboration and	This verifies that the systemC	Confirm that AutoML fosters	Validate that AutoML
Control	facilitates a	collaborative environment	facilitates collaboration where
	effective collaborationw	hichere users can guide and	users can guide fairness
	between human re	efine automated	objectives,
	controllers and AI, therebyp	rocesses while	ensuring that the automated
	balancing re	etaining ultimate	system aligns with ethical
	autonomy with humance	ontrol over model outcomes.	human priorities and avoids
	control.		unintended bias.

5. Care and Responsibility

This dimension addresses the ethical, safety, and accountability aspects of AutoML system deployment, ensuring responsible human-AI collaboration. It involves designing features that support decision governance, promote accountability through transparent and predictable AI behavior, and establish robust safety "guardrails." Key HCI elements include the implementation of various disclosures (e.g., data/model cards, TEVV results, and failure mode histories) to build trust and enable informed user decisions. Furthermore, this dimension necessitates mechanisms for continuous improvement through regular updates and robust Adverse Incident Reporting Systems, ensuring that AutoML systems are not only effective but also reliable, safe, and ethically managed throughout their lifecycle.

Decision Governance: Decision governance in the context of human-computer interaction (HCI) in AI involves enabling features that support overseeing the decision-making processes of AI systems to ensure that these interactions are transparent, trustworthy, and aligned with human values. Further, decision governance in AI must consider the balance between automation and human accountability, particularly in high-stakes environments such as healthcare, finance, and autonomous systems (Çakır, 2024) (Liu, 2021).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Evaluation criteria	General description	•	Fairness context
		description	
Oversight of Al	Verify that the system	Confirm that AutoML offers	Validate that AutoML
Decision-Making	provides	mechanisms to oversee	provides features to oversee
	features that	automated	decisions
	enable users to	choices regarding model	related to fairness, such as
	effectively oversee AI's	architecture, feature	how bias mitigation strategies
	decision-	selection, or	are applied or which fairness
	making processes.	hyperparameter optimization	metrics are prioritized.
		throughout	
		the pipeline.	
Trustworthiness	Confirm that the	Verify that AutoML's	Validate that AutoML's
Alignment with	system design	automated decisions are	decision governance
Values	supports trustworthy	demonstrably aligned with user-	features ensure
	interactions and	defined objectives and ethical	alignment with human values
	aligns AI decisions	guidelines, fostering trust in its	regarding
	with human values and	outcomes.	fairness, promoting
	ethical		equitable outcomes, and
	principles.		preventing discriminatory
			decisions.

Accountability: Designing for accountability is part of incorporating human concerns into HCAI tools. Accountability is a desired mechanism for trustworthy autoML systems (Khuat et al., 2022). AI practitioners are obligated to take responsibility for public interaction (Mathewson, 2019). Transparency, understandability, and predictability are required for operators to hold autonomous systems accountable. Ensuring accountability is crucial for building trust in AI applications (Retzlaff et al., 2024).

Evaluation criter	ria	General d	escriptio	on	AutoML		specific	Fairness co	ntext	
D. 1	<u> </u>	г .	1 41	41	description		A 4 MT.1	77 . C	1 4	A 4 N/T
Balance		Examine			Confirm		AutoML's			AutoML
Automation	and	system	strike		ndesign			_		lineates
Accountability		appropria	te	balanc	eallocation	n of r	esponsibility	responsibili	ty for	fairness
		between	;	automate	dallowing	users to	understand	outcomes,	ensu	ring that
		decision-1	naking	and clea	r		when	users	can	trace
				human	automati	on occurs	and where	accountabil	ity fo	or biased
		accountab	ility	for			human	decisions	to d	esign or
		outcomes			accounta	bility lies	for model	intervention	n point	S.
					deploym	ent.			•	
Auditability	and	Evaluate	whet	her th	eCheck	whether	AutoML	Examine if	Autol	ML's audit
Traceability		system	ŗ	provides	generates	s detailed	audit trails	trails speci	fically	document
		comprehe	nsive	logs an	dfor ever	y automa	ted decision	fairness-		related
		audit tra	ils to	trace A	Ipoint,	includi	ng data	intervention	ıs, suc	h as bias
		decisions	and	thei	rtransforn	nations, m	odel choices	detection	repo	rts and
			conti	ributing		uation resu		mitigation	•	technique
		factors.		8				application	S.	for
								traceability		-51
								lacousinty	•	

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Guardrails: While "guardrails" is a primary Human Computer Interaction feature, it is critical to designing reliable, safe, and trustworthy systems (Mathewson, 2019), implementing verification processes and control mechanisms, mitigating risks in safety-critical contexts, and enabling human oversight; the ability to avert undesirable actions is fundamental to Human Computer Interaction (Khuat et al., 2022) (Theis et al., 2023).

Evaluation criteria	General description	AutoML specific Fairness context description
Design for Reliability		incorporates guardrails to AutoML are designed to ensure ensure the reliability of the reliable application of
Safety Criti Contexts	guardrails effectively mitigate risks and ensure safe operation, especially	Check whether AutoML Examine whether implements robust guardrails in AutoML guardrails to prevent the specifically prevent the deployment of potentially generation or deployment of unsafe or unvetted models that could lead automated models in to discriminatory harm in

	applications.	safety-critical domains.	sensitive or critical
			applications.
Verification	Confirm that	Verify that AutoML's	Validate that the guardrails in
Processes	guardrails includ	eguardrails incorporate	eAutoML include verification
	rigorous verification	nautomated verification	processes to confirm that
	processes to validat	eprocesses to confirm mode	lfairness metrics meet predefined
	system behavior	quality, adherence to	othresholds before a model is
	against defined	performance thresholds, or	rconsidered viable.
	standards.	data integrity before	
		deployment.	
Control	Assess whether	Confirm that AutoMI	Verify that AutoML offers
Mechanisms	guardrails provide clea	rprovides users with clear	rexplicit control mechanisms
	and effective contro	lcontrol mechanisms	within its guardrails, enabling
	mechanisms for users to	within the guardrails, allowing	gusers to set strict fairness targets
	manage AI system	them to set bounds on search	nor mandating the application of
	operations and outputs.	space, resource usage, or	rspecific bias-mitigation
		model complexity.	techniques.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Disclosures: Disclosures of system capabilities, limitations, and potential errors are discussed as crucial aspects of transparency. Setting user expectations includes the following:

□ Data/Model Cards:
☐ Model card (Raulf et al., 2023) and data card (Pushkarna et al., 2022) disclosure are practical mechanisms for
enhancing transparency and supporting responsible AI development by providing structured documentation on models
and datasets, including details relevant to training, evaluation, and intended use. TEVV Results:
☐ Testing, Evaluation, Validation, and Verification (TEVV) results as disclosure enable dosntream adoption of such
systems, including gaining adequate visibility around usability evaluation, performance metrics, safety and robustness
and through user studies (Khuat et al., 2022). Such an effort supports users in determining the adoption approaches.

Failure modes/adverse incident history: Addressing potential failures and unpredictable behaviors is crucial for designing safe AI systems. Providing information regarding why a system fails or might fail or be unable to perform a task (e.g., a chatbot being unable to respond) is a part of disclosures (Shneiderman, 2020). Designing for human understanding and control is important so that stakeholders can interrupt anything incomprehensible and potentially dangerous. Disclosures are needed in case of errors or anticipated errors (Chromik & Butz, 2021). Highlighting and textually explaining ambiguous predictions helps users appropriately reassess their level of trust. Discrepancies between human and machine predictions indicate that an error exists, justifying the need for explanation and verification (Khuat et al., 2022).

Evaluation criteria	General description	AutoML specific description	Fairness context	
System Capabilities Disclosure	clearly and accurately discloses its functionalities and the range of tasks it can	explicitly communicates the types of ML tasks it can automate, the algorithms it	Validate that AutoML discloses its capabilities in detecting and mitigating various types of biases or ensuring specific fairness criteria.	
System Limitations Disclosure	system transparently communicates its inherent limitations, boundaries, and	limitations regarding data size, model complexity, or the quality of solutions it can guarantee in specific contexts.	transparently discloses its limitations in achieving perfect fairness or its inability to	
Data/Model Cards Implementation	documentation, such as Data Cards and Model Cards, is consistently provided for transparency and	Cards for generated models and Data Cards for datasets used, detailing training, evaluation, and intended use.	explicitly include sections on fairness	

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

TEVV Results Disclosure	Evaluation, Validation, and Verification (TEVV) results are transparently disclosed to enable informed system	TEV V results, including usability evaluations, performance metrics, and robustness assessments, to support	results disclosed by AutoML include detailed assessments of fairness metrics, bias
Failure Modes/Adverse Incidents History	system provides clear information about its potential failure modes,	modes, instances where automation failed, or explanations for the inability to	records and discloses any incidents where automated processes lead to unfair or biased outcomes, including the identified reasons and
Ambiguity and Uncertainty Highlighting	uncertainties in its outputs to help users assess	explicitly highlights any ambiguity or low confidence in its automated	uncertainty in its fairness

Patches and Updates: Regular updates and patches to AI systems play a crucial role in enhancing human-computer interaction (HCI) by ensuring that the tools remain relevant, accurate, and aligned with user expectations. A critical aspect of regular updates is their ability to improve the predictive performance of AI systems (Bansal et al., 2019). This is particularly crucial in high-stakes domains such as healthcare and criminal justice (domains where human and AI collaboration is essential for decision-making), wherein updates may actually harm overall team performance if they are not compatible with the user's past experiences (Bansal et al., 2019). Furthermore, AI systems should strive for a balance between performance and compatibility, ensuring that enhancements in AI performance are aligned with user expectations and do not disrupt established workflows (Bansal et al., 2019). For instance, in conversational AI, regular updates driven by deep learning and data from human interactions enable systems to become more adept at understanding and responding to natural language (Yan, 2018).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Evaluation criteria	*	AutoML specific l description	Fairness context
Level of Oversight Supported	system design in consistently supports as high level of humanc oversight overo autonomous se	nterfaces provides	ethical
Predictive Performance Improvement	updates u demonstrably e	enhance the predictive i	AutoML lead to demonstrable improvements in the fairness
	predictive performanceg and overallin capabilities the	generated models and models are models and models and models and models and models are models and models and models are models are models and models are models are models and models are models and models are models and models are models are models are models and models are m	and equitable performance of the generated models. The updates shall not create inconsistent fairness outcomes compared to its previous version

Adverse Incident Reporting System: An Adverse Incident Reporting System (AIRS) serves as a critical component in the intersection of Human-Computer Interaction (HCI) and Artificial Intelligence (AI), playing an essential role in documenting and analyzing incidents that arise from AI systems. As AI systems become more prevalent, adverse events provide invaluable learning opportunities to refine AI algorithms and improve their interactions with humans (Lupo, 2023). A robust incident-reporting strategy facilitates the development of flexible regulatory frameworks that evolve alongside new AI technologies (Lupo, 2023). Documentation of incidents, particularly those highlighting system biases, is crucial for learning from past failures and advancing policy recommendations aimed at mitigating these risks (Turri & Dzombak, 2023). Proper incident reporting assists teams in understanding and contextualizing AI actions, fostering trust, and improving the effectiveness of human-AI collaborations (Zhang et al., 2024). Moreover, as AI systems increasingly handle complex tasks, an understanding augmented by clear incident reporting can bridge the gap between human expectations and AI functionalities (Zhang et al., 2024). Designing human-AI interactions is complicated by AI's output complexity and the uncertainty surrounding its capabilities. AIRS can provide insights into these design challenges, aiding designers and researchers in effectively addressing them (Yang et al., 2020).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Evaluation criteria	General description		AutoML specific		Fairness con	Fairness context		
			description	1				
Documentation &	Verify that the	ne AIRS	Confirm	that	AutoMI	'sValidate	that	AIRS
	•		AIRS	шаі	effectively			
•	comprehensive,	,	documents		and	and analy	•	idents
incidents		and nechanisms		•	incidents	_		
	stanuaruizeu ii		related	to	automated			
	documenting		model	Ю	failures,	_		nfair
	analyzing			1 norf	ormance,			
	incidents from AI		unexpected	ı perio			across	use
	incidents from Ai	systems.	ragaliraa	iccue	or s during i	groups.		
				188468	s during i	ıs		
			operation.					
Duidaina Erraattian	Erralmata		Classis 4las	4 44	aMI !a AID	SExamine wh	41 41	A ID C
Bridging Expectation								
Gaps	_	augmented	Γ	_	is into 1	tshelps brid	_	gap
	b _.	-	operational		1	between hi		A T
	incident reporting	g can	complexiti	es, ne	elping to	expectations	oi tair A	A1
bri	dge the gap l	betweenbri	dge		user a	nd AutoM	L's act	ual
hu	man expectations	and Alex	pectations	with	the actualp	erformance	regard	ing
fur	ectionalities.	fuı	nctionalitie	s of	automatede	quity, guidin	g users	on
		M	L.				realisti	c
					c	apabilities.		

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Conclusion

The field of human–computer interaction (HCI) is undergoing significant evolution, particularly with the rise of Automated Machine Learning (AutoML). This shift highlights the crucial role of human oversight, understanding, and collaboration, even in increasingly autonomous systems (Balcombe & De Leo, 2022). HCI plays a crucial role in bridging the gap between human capabilities and technological advancements. It employs a range of research methods, including experimental design, eye-tracking, qualitative research, and cognitive modeling (Research Methods for Human-Computer Interaction, 2008). The field continues to evolve, addressing the challenges posed by new technologies and user demands while also contributing to the development of psychological and social theories in the context of technology use (Carroll, 1997).

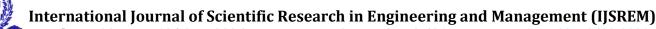
As AutoML continues to advance towards greater autonomy, a human-centered approach to HCI will remain paramount, transforming human roles from direct operation to strategic supervision and collaborative partnership with intelligent systems. The evolution of human—computer interaction (HCI) from a focus on basic functionality to encompassing user experience, ethical considerations, and emerging technologies has profoundly impacted the development of Artificial Intelligence (AI) systems, particularly Automated Machine Learning (AutoML). Although AutoML initially aimed to minimize human intervention, the growing recognition of the need for human oversight, collaboration, and trust has underscored the critical role of HCI (Holzinger et al., 2025).

As AutoML systems advance towards greater autonomy (AutonoML), the nature of human interaction is expected to evolve. The relationship may transform from direct instruction to collaboration, where the system is seen more as a partner or teammate. This collaboration leverages the complementary strengths of humans and machines. New human roles, such as "explainers" and "sustainers," may emerge to bridge the human-system gap, interpret system behaviors, ensure ethical compliance, and validate outcomes. Optimizing collaborative interactions involves strategically distributing tasks based on the strengths of humans and the autonomous system. Modern viewpoints advocate for a Human-Centered AI (HCAI) framework that treats automation and human control as orthogonal axes, ensuring that humans retain the option to intervene or oversee (Khuat et al., 2022).

Convergence of HCAI views presents an opportunity to address the black-box nature of AutoML systems by incorporating HCI principles to enhance user understanding and control. Therefore, emergent approaches are attempting to address the greatest weakness of modern AutoML offerings – their black-box nature – which serves as a significant motivating factor for further research into HCI (Mueller et al., 2023). To improve the interaction between humans and AutoML systems, researchers can create more transparent, user-friendly, and trustworthy automated machine learning tools that balance automation with user understanding and control (Karmaker ("Santu") et al., 2021) (Li et al., 2020).

This paper proposes a comprehensive framework for HCI evaluation in AutoML, structured across five crucial dimensions: Contracts and User Development, User Interface, Interaction and Experience Design, Information Architecture, Human Augmentation Factors Design, and Care and Responsibility. By prioritizing transparency, explainability, usability, and ethical considerations, this framework aims to foster trust and ensure that AutoML systems are not merely functional but also equitable, safe, and truly beneficial for all users.

This framework emphasizes transparent disclosures, intuitive interfaces, structured information presentation, user empowerment, and ethical considerations, including fairness and accountability. Further, the framework exhibits the need for prioritizing user-centered design and aims to bridge the gap between AutoML's technical capabilities and diverse user needs, fostering a future where AI systems are not only efficient but also trustworthy, transparent, and truly collaborative partners. The continued integration of HCI principles is paramount for realizing the full potential of AutoML, ensuring that these powerful tools are developed and deployed in a manner that benefits all users and society (Nakao et al., 2022) (Yu, 2023).



Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

References

Human-Computer Interaction. (2003). crc. https://doi.org/10.1201/9780367804787

Olson, G. M., & Olson, J. S. (2002). Human-Computer Interaction: Psychological Aspects of the Human Use of Computing. *Annual Review of Psychology*, *54*(1), 491–516. https://doi.org/10.1146/annurev.psych.54.101601.145044

Fallman, D. (2007). Why Research-Oriented Design Isn't Design-Oriented Research: On the Tensions Between Design and Research in an Implicit Design Discipline. *Knowledge, Technology & Policy*, 20(3), 193–200. https://doi.org/10.1007/s12130-007-9022-8

Kheder, H. A. (2023). HUMAN-COMPUTER INTERACTION: ENHANCING USER EXPERIENCE IN INTERACTIVE SYSTEMS. *Kufa Journal of Engineering*, *14*(4), 23–41. https://doi.org/10.30572/2018/kje/140403

Lakkshmanan, A., Tyagi, A. K., Sree, P. H., & Sharma, A. K. (2024). *Engineering Applications of Artificial Intelligence* (pp. 166–179). igi global. https://doi.org/10.4018/979-8-3693-5261-8.ch010

Kosch, T., Zagermann, J., Schmidt, A., Reiterer, H., Karolus, J., & Woźniak, P. W. (2023). A Survey on Measuring Cognitive Workload in Human-Computer Interaction. *ACM Computing Surveys*, 55(13s), 1–39. https://doi.org/10.1145/3582272

Khuat, T., Kedziora, D., & Gabrys, B. (2022). *The Roles and Modes of Human Interactions with Automated Machine Learning Systems*. cornell university. https://doi.org/10.48550/arxiv.2205.04139

Karmaker ("Santu"), S. K., Hassan, M. M., Zhai, C., Smith, M. J., Xu, L., & Veeramachaneni, K. (2021). AutoML to Date and Beyond: Challenges and Opportunities. *ACM Computing Surveys*, 54(8), 1–36. https://doi.org/10.1145/3470918

Crisan, A., & Fiore-Gartland, B. (2021). Fits and Starts: Enterprise Use of AutoML and the Role of Humans in the Loop. 1–15. https://doi.org/10.1145/3411764.3445775

Mathewson, K. (2019). *A Human-Centered Approach to Interactive Machine Learning*. https://doi.org/10.48550/arxiv.1905.06289

Li, Y., Lasecki, W. S., Hilliges, O., & Kumar, R. (2020, April 25). *Artificial Intelligence for HCI: A Modern Approach*. https://doi.org/10.1145/3334480.3375147

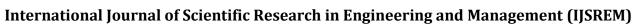
Lindauer, M., Karl, F., Klier, A., Moosbauer, J., Tornede, A., Mueller, A., Hutter, F., Feurer, M., & Bischl, B. (2024). *Position: A Call to Action for a Human-Centered AutoML Paradigm*. https://doi.org/10.48550/arxiv.2406.03348

Bach, T. A., Khan, A., Hallock, H., Beltrão, G., & Sousa, S. (2022). A Systematic Literature Review of User Trust in AI-Enabled Systems: An HCI Perspective. *International Journal of Human—Computer Interaction*, 40(5), 1251–1266. https://doi.org/10.1080/10447318.2022.2138826

Veitch, E., & Alsos, O. A. (2021). Human-Centered Explainable Artificial Intelligence for Marine Autonomous Surface Vehicles. *Journal of Marine Science and Engineering*, 9(11), 1227. https://doi.org/10.3390/jmse9111227

Ehsan, U., Muller, M., Liao, Q. V., Riedl, M. O., & Weisz, J. D. (2021). *Expanding Explainability: Towards Social Transparency in AI systems*. 1–19. https://doi.org/10.1145/3411764.3445188

Whaiduzzaman, M., Shahrier, L., Barros, A., Jan, T., Rahman, M. S., Sakib, A., Fidge, C., Khan, N. J., Thompson-



Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Whiteside, S., Mahi, M. J. N., Ghosh, S., & Chaki, S. (2023). Concept to Reality: An Integrated Approach to Testing Software User Interfaces. *Applied Sciences*, *13*(21), 11997. https://doi.org/10.3390/app132111997

Mishra, R., Pati, B., & Satpathy, R. (2023). Human Computer Interaction Applications in Healthcare: An Integrative Review. *EAI Endorsed Transactions on Pervasive Health and Technology*, 9. https://doi.org/10.4108/eetpht.9.4186

Vorm, E. S., & Combs, D. J. Y. (2022). Integrating Transparency, Trust, and Acceptance: The Intelligent Systems Technology Acceptance Model (ISTAM). *International Journal of Human– Computer*Interaction,

38(18–20), 1828–1845.

https://doi.org/10.1080/10447318.2022.2070107

Amershi, S., Vorvoreanu, M., Teevan, J., Horvitz, E., Fourney, A., Suh, J., Kikin-Gil, R., Bennett, P. N., Nushi, B., Collisson, P., Iqbal, S., Weld, D., & Inkpen, K. (2019, May 2). *Guidelines for Human- AI Interaction*. https://doi.org/10.1145/3290605.3300233

Raulf, A., Bruder, C., Berro, C., Deligiannaki, F., Theis, S., & Jentzsch, S. (2023). *Requirements for Explainability and Acceptance of Artificial Intelligence in Collaborative Work*. https://doi.org/10.48550/arxiv.2306.15394

Le D. J. L., & Macke, S. (2020). A Human-in-the-loop Perspective on AutoML: Milestones and the Road Ahead. IEEE Data Engineering Bulletin.

Retzlaff, C. O., Afshari, M., Mousavi, P., Wayllace, C., Das, S., Holzinger, A., Saranti, A., Yang, T., Angerschmid, A., & Taylor, M. E. (2024). Human-in-the-Loop Reinforcement Learning: A Survey and Position on Requirements, Challenges, and Opportunities. *Journal of Artificial Intelligence Research*, 79, 359–415. https://doi.org/10.1613/jair.1.15348

Pushkarna, M., Kjartansson, O., & Zaldivar, A. (2022). Data Cards: Purposeful and Transparent Dataset

Documentation for Responsible AI. 1776–1826.

https://doi.org/10.1145/3531146.3533231

Pushkarna, M., Zaldivar, A., & Kjartansson, O. (2022). Data Cards: Purposeful and Transparent Dataset

Documentation for Responsible AI. cornell university.

https://doi.org/10.48550/arxiv.2204.01075

Li, Y., Wu, B., Huang, Y., & Luan, S. (2024). Developing trustworthy artificial intelligence: insights from research on interpersonal, human-automation, and human-AI trust. *Frontiers in Psychology*, 15. https://doi.org/10.3389/fpsyg.2024.1382693

Chromik, M., & Butz, A. (2021). *Human-XAI Interaction: A Review and Design Principles for Explanation User Interfaces* (pp. 619–640). springer. https://doi.org/10.1007/978-3-030-85616-8 36

Ashtana, R., Vikash, V., & Omprakash, O. (2018). Human-centric machine learning: Addressing user experience and ethical considerations. *International Journal of Applied Research*, 4(12), 65–69. https://doi.org/10.22271/allresearch.2018.v4.i12a.11467

Pop, E.-L., & Raţiu, A. (2024). *Human-Computer Interaction in Artificial Intelligence with Applications in Healthcare: A Review*. institut f r ost und s dosteuropaforschung. https://doi.org/10.3233/faia241213

Rundo, L., Sala, E., Vitabile, S., Gambino, O., & Pirrone, R. (2020). Recent advances of HCI in decision-making tasks for optimized clinical workflows and precision medicine. *Journal of Biomedical Informatics*, 108, 103479. https://doi.org/10.1016/j.jbi.2020.103479

Volume: 09 Issue: 10 | Oct - 2025

Acemyan, C. Z., & Kortum, P. (2012). The Relationship Between Trust and Usability in Systems. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1842–1846. https://doi.org/10.1177/1071181312561371

Elmqvist, N. (2024).Shin, S., Visualization for Human-Centered Tools. https://doi.org/10.48550/arxiv.2404.02147

Veale, M., Binns, R., & Van Kleek, M. (2018). Some HCI Priorities for GDPR-Compliant Machine Learning. center for open science. https://doi.org/10.31228/osf.io/wm6yk

Buçinca, Z., Malaya, M., & Gajos, K. (2021). To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AIin AI-assisted Decision-making. https://doi.org/10.48550/arxiv.2102.09692

Chen, J. Y. C. (2022). Transparent Human-Agent Communications. International Journal of Human-Computer Interaction, 38(18–20), 1737-1738. https://doi.org/10.1080/10447318.2022.2120173

Yu, S. (2023). Towards Trustworthy and Understandable AI: Unraveling Explainability Strategies on Simplifying Collaboration. Algorithms, **Appropriate** Information Disclosure, and High-level 133–143. https://doi.org/10.1145/3616961.3616965

El Ali, A., Venkatraj, K. P., Morosoli, S., Cesar, P., Naudts, L., & Helberger, N. (2024). Transparent AI Disclosure Obligations: Who, What, When, Where, Why, How. 43, 1-11. https://doi.org/10.1145/3613905.3650750

Xu, W., Dainoff, M. J., Ge, L., & Gao, Z. (2022). Transitioning to Human Interaction with AI Systems: New Challenges and Opportunities for HCI Professionals to Enable Human-Centered AI. International Journal of Human-Computer Interaction, ahead-of-print(ahead-of-print), 494-518. https://doi.org/10.1080/10447318.2022.2041900

Nazar, M., Yafi, E., Su'Ud, M. M., & Alam, M. M. (2021). A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques. IEEEAccess, 9, 153316–153348. https://doi.org/10.1109/access.2021.3127881

Sundar, S. S., & Lee, E.-J. (2022). Rethinking Communication in the Era of Artificial Intelligence. Human Communication Research, 48(3), 379–385. https://doi.org/10.1093/hcr/hqac014

Guzman, A. L., & Lewis, S. C. (2019). Artificial intelligence and communication: A Human-Machine Communication research agenda. New Media & Society, 22(1), 70-86. https://doi.org/10.1177/1461444819858691

Zhang, R., Duan, W., Knijnenburg, B., Flathmann, C., Mcneese, N. J., Schelble, B., & Musick, G. (2024). I Know This Looks Bad, But I Can Explain: Understanding When AI Should Explain Actions In Human-AI Teams. ACM Transactions on Interactive Intelligent Systems, 14(1), 1–23. https://doi.org/10.1145/3635474

Balcombe, L., & De Leo, D. (2022). Human-Computer Interaction in Digital Mental Health. Informatics, 9(1), 14. https://doi.org/10.3390/informatics9010014

Çakır, A. M. (2024). Human AI Collaboration in Decision-Making Auto Systems With AI. Human Computer Interaction, 8(1), 123. https://doi.org/10.62802/b4z5p105

Liu, B. (2021). In AI We Trust? Effects of Agency Locus and Transparency on Uncertainty Reduction in Human-AI Interaction. Journal of Computer-Mediated Communication, 26(6), 384

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-393

402. https://doi.org/10.1093/jcmc/zmab013

Shneiderman, B. (2020). Human-Centered Artificial Intelligence: Three Fresh Ideas. *AIS Transactions on Human-Computer Interaction*, 12(3), 109–124. https://doi.org/10.17705/1thci.00131

Bansal, G., Nushi, B., Kamar, E., Horvitz, E., Weld, D. S., & Lasecki, W. S. (2019). Updates in Human-AI Teams: Understanding and Addressing the Performance/Compatibility Tradeoff. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01), 2429–2437. https://doi.org/10.1609/aaai.v33i01.33012429

Yan, R. (2018). "Chitty-Chitty-Chat Bot": Deep Learning for Conversational AI. 5520–5526. https://doi.org/10.24963/ijcai.2018/778

Lupo, G. (2023). Risky Artificial Intelligence: The Role of Incidents in the Path to AI Regulation. *Law, Technology and Humans*, 5(1), 133–152. https://doi.org/10.5204/lthj.2682

Turri, V., & Dzombak, R. (2023). Why We Need to Know More: Exploring the State of AI Incident Documentation Practices. 576–583. https://doi.org/10.1145/3600211.3604700

Yang, Q., Steinfeld, A., Zimmerman, J., & Rosé, C. (2020). Re-examining Whether, Why, and How Human-AI Interaction Is Uniquely Difficult to Design. 1–13. https://doi.org/10.1145/3313831.3376301

Research Methods for Human-Computer Interaction. (2008). cambridge university. https://doi.org/10.1017/cbo9780511814570

Carroll, J. M. (1997). HUMAN-COMPUTER INTERACTION: Psychology as a Science of Design. *Annual Review of Psychology*, 48(1), 61–83. https://doi.org/10.1146/annurev.psych.48.1.61

Holzinger, A., Zatloukal, K., & Müller, H. (2025). Is human oversight to AI systems still possible? *New Biotechnology*, 85, 59–62. https://doi.org/10.1016/j.nbt.2024.12.003

Mueller, F. 'Floyd,' Andres, J., Mehta, Y., Semertzidis, N., Li, X., Benford, S., Marshall, J., & Matjeka, L. (2023). Toward Understanding the Design of Intertwined Human–Computer Integrations. *ACM Transactions on Computer-Human Interaction*, 30(5), 1–45. https://doi.org/10.1145/3590766

Nakao, Y., Strappelli, L., Stumpf, S., Naseer, A., Regoli, D., & Gamba, G. D. (2022). Towards Responsible AI: A Design Space Exploration of Human-Centered Artificial Intelligence User Interfaces to Investigate Fairness. *International Journal of Human-Computer Interaction, ahead-of-print*(ahead-of-print), 1762–1788. https://doi.org/10.1080/10447318.2022.2067936