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 In recent years, advancements in artificial intelligence have led to a surge in 

the generation of synthetic and manipulated audio, commonly referred to as 

"deepfake audio." While these technologies offer advantages across various 

domains, they also present serious security and ethical concerns, particularly 

in contexts where the authenticity of audio is critical. This paper introduces 

a novel deep learning-based approach for detecting deepfake audio using a 

combination of Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM) networks, and an Attention mechanism. The proposed 

architecture utilizes CNNs to extract high-level spatial features from audio 

spectrograms, while the LSTM network captures the temporal dependencies 

inherent in audio sequences. The integration of the Attention mechanism 

further enhances the model's ability to focus on key segments of the audio 

that are more likely to contain deceptive artifacts. Through comprehensive 

experimentation on publicly available datasets, our model demonstrates 

superior performance in terms of accuracy and robustness compared to 

traditional and standalone deep learning models. These findings underscore 

the potential of hybrid architectures in effectively addressing the challenges 

of deepfake audio detection and contribute to the development of trustworthy 

audio verification systems.  

 

1. INTRODUCTION  

With rapid advancements in artificial intelligence, deep 

learning has emerged as a powerful tool for generating 

highly realistic synthetic audio, commonly known as 

"deepfake audio." These technologies, capable of 

manipulating or synthesizing human speech, are 

increasingly being adopted in diverse applications such 

as virtual assistants, entertainment, audiobooks, and 

customer service automation. While these applications 

offer innovative possibilities, they also raise serious 

ethical and security concerns. Malicious actors can 

exploit deepfake audio to impersonate individuals, 

spread misinformation, and commit fraud—threatening 

privacy, trust, and integrity in digital communication 

systems. 

 

Detecting fake audio has thus become a critical research 

challenge. Unlike visual deepfakes, where 

inconsistencies can sometimes be spotted visually, 

deepfake audio often involves subtle spectral and 

temporal manipulations that are difficult to detect. 

Traditional machine learning techniques, which depend 

on handcrafted feature extraction, often fall short in 

capturing the fine-grained differences between 

authentic and synthetic audio signals. In contrast, deep 

learning approaches—particularly  
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Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks—have shown 

promise in effectively modeling the complexity of audio 

data due to their ability to automatically learn rich and 

hierarchical feature representations. 

 

This paper proposes a deep learning-based framework 

for detecting deepfake audio using a combination of 

CNN, LSTM, and Attention mechanisms. The CNN 

layers are used to extract local spectral features from 

audio spectrograms, while the LSTM layers model the 

sequential temporal dependencies within the audio. To 

further enhance the model’s focus on important audio 

segments, an Attention layer is integrated, enabling the 

network to weigh the most relevant parts of the signal 

during classification. This architecture is designed to 

capture both spatial and temporal patterns in synthetic 

speech, improving detection accuracy and robustness. 

 

Through comprehensive experiments on publicly 

available deepfake audio datasets, our CNN-LSTM-

Attention model demonstrates improved performance 

over traditional and standalone deep learning methods. 

The results highlight the effectiveness of hybrid 

architectures in identifying manipulated speech and 

contribute to the development of secure and trustworthy 

audio-based authentication systems. 

 2.Literature Review 

 This literature review explores the evolving landscape 

of audio deepfake generation and detection techniques. 

With the rise of generative AI, synthetic manipulation 

of multimedia content—particularly audio—has 

become increasingly sophisticated. Deepfake audio, 

which involves the artificial synthesis or alteration of 

human speech, poses a unique challenge due to its 

ability to closely mimic real voices, making detection 

significantly more difficult compared to image or video 

deepfakes. 

Various methods have been developed for detecting 

audio deepfakes, ranging from classical machine 

learning algorithms to advanced deep learning 

approaches. Traditional techniques include Support 

Vector Machines (SVM), Decision Trees (DT), and 

Gradient Boosting classifiers, while more recent 

methods leverage deep architectures such as 

Convolutional Neural Networks (CNN), Deep Neural 

Networks (DNN), and hybrid models combining CNNs 

with Recurrent Neural Networks (RNN) or Siamese 

networks. These models analyze intricate temporal and 

spectral features of audio to differentiate between real 

and synthetic speech. Reported performance varies, 

with SVM achieving up to 90% accuracy and Decision 

Trees lagging at around 73.33%. Evaluation metrics 

such as Equal Error Rate (EER), tandem Detection Cost 

Function (t-DCF), and Area Under the ROC Curve 

(AUC) are commonly used to benchmark performance. 

Notably, the DeepSonar framework has achieved an 

EER as low as 2%, while Siamese CNN architectures 

have shown strong results across multiple performance 

metrics. 

To enhance detection accuracy, various feature 

extraction techniques have been studied. Mel-frequency 

cepstral coefficients (MFCCs) and Mel spectrograms 

are among the most effective representations of audio 

signals, as they closely model human auditory 

perception. These features are typically extracted from 

datasets like ASVspoof 2019, which provides a rich 

benchmark for evaluating spoofing countermeasures in 

automatic speaker verification (ASV) systems. Other 

datasets such as Fake-or-Real are also frequently 

utilized to train and validate detection models. 

Recent research highlights the effectiveness of CNN-

based architectures in learning meaningful spatial 

features from spectrograms. When combined with 

LSTM layers, these models can capture temporal 

dependencies critical for identifying unnatural 

transitions in speech. Attention mechanisms further 

enhance model performance by allowing the network to 

focus on the most relevant segments of the audio signal. 

Optimization strategies like the Adam optimizer, along 

with binary cross-entropy loss, are commonly used to 

train these deep models. Performance is assessed using 

metrics such as accuracy, F1-score, AUC, and ROC 

curves. 

Beyond technical advancements, the literature 

recognizes the broader implications of deepfake audio. 

In areas like media forensics, voice biometrics, and 

secure communication, the ability to distinguish 

between real and synthetic audio is vital. The rapid 

development and accessibility of voice cloning tools 

raise significant concerns related to identity theft, 

misinformation, and the erosion of public trust in digital 

media. Consequently, researchers emphasize the need 

for comprehensive strategies—combining technical 

solutions with policy regulations and public awareness 
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initiatives—to effectively counter the growing threat of 

deepfakes in the digital age. 

  

3. Methodology 

 1. Data Collection 

The system uses the SceneFake dataset from Kaggle, 

which provides a comprehensive collection of real and 

deepfake audio samples.  

This dataset includes various voice samples generated 

using speech synthesis and voice conversion 

techniques. It represents real-world deepfake generation 

methods, making it suitable for training robust models. 

Both male and female voices are included across 

different scenarios, enhancing generalization. The audio 

files come with labels indicating whether the sample is 

real or fake. Samples vary in quality and speaker 

characteristics, providing a realistic training base. 

Dataset is split into training, validation, and testing 

subsets to prevent overfitting. Metadata and file 

structures are parsed to systematically organize and 

preprocess the data.SceneFake adds complexity to the 

dataset by including environmental noise and varied 

speech styles.. 

  

2. Preprocessing  

All audio samples are resampled to 16kHz to 

standardize input data and reduce computational cost. 

Each audio file is trimmed or padded to 3 seconds to 

ensure uniform input length. The audio is converted into 

Mel-Frequency Cepstral Coefficients (MFCCs), which 

are well-suited for voice analysis. MFCCs help in 

capturing timbral texture and speaker characteristics, 

essential for deepfake detection.  Converted MFCCs are 

stored as NumPy arrays for fast loading during model 

training. The final feature representation balances both 

accuracy and computational efficiency.  

    3. Feature Extraction  

Feature extraction is done using MFCCs, a proven 

method for representing audio content compactly. 

MFCCs convert audio from time domain to a frequency 

domain representation reflecting human perception. We 

extract  MFCC coefficients from each frame to capture 

sufficient spectral details. The resulting spectrogram is 

treated like an image for processing through CNN 

layers. MFCCs provide a compact and discriminative 

representation for both real and fake audio samples. 

   4. Model Architecture 

 The model uses a hybrid CNN-LSTM-Attention 

architecture for enhanced learning from audio data. 

CNN layers extract spatial patterns from MFCC 

spectrograms (e.g., pitch contours, harmonics).LSTM 

layers model the sequential aspect of speech, capturing 

the flow of phonemes and syllables. The attention 

mechanism is used on top of LSTM to focus on 

informative segments in audio. This combination allows 

the model to learn both local (frame-level) and global 

(utterance-level) features. Dropout and batch 

normalization are used to prevent overfitting and 

accelerate training. The final dense layer uses a sigmoid 

or softmax function for binary classification. The model 

is compiled using the Adam optimizer and binary cross-

entropy loss. This architecture is designed to generalize 

well on unseen voices and deepfake techniques. 

 

  5. Model Training 

The dataset is divided into training (70%), validation 

(15%), and test (15%) splits. We use a batch size of 32 

and train for 50 epochs, with early stopping to avoid 

overfitting. The training process is monitored using 

validation loss and accuracy. The model is checkpointed 

at every epoch for recovery and tuning. Regularization 

is applied through dropout layers (0.3–0.5) after dense 

and LSTM layers. Final model weights are saved for 

future inference and evaluation. 

1. Loss Function: A binary cross-entropy loss 

function was employed, given the binary classification 

task. 

2. Optimizer: The Adam optimizer was chosen 

for its adaptability and efficient convergence, with an 

initial learning rate of 0.001. 

3. Batch Size and Epochs: Training was 

conducted with a batch size of 32 over 10-15 epochs, 

based on observed convergence rates and computational 

limitations. 
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To prevent overfitting, early stopping with a patience 

parameter of 5 epochs was implemented. Additionally, 

dropout layers were added after each fully connected 

layer to further regularize the model 

     6. Evaluation Metrics 

   The performance of the CNN-LSTM model was 

evaluated using the following metrics: 

• Accuracy: The percentage of correctly 

classified audio samples, used as a primary indicator of 

model performance. 

• Precision, Recall, and F1-Score: Precision 

measures the accuracy of fake audio predictions, while 

recall evaluates the model’s ability to identify all 

instances of fake audio. The F1-score provides a 

harmonic mean of precision and recall, offering a 

balanced metric for assessing overall performance. 

• Area Under the ROC Curve (AUC): This 

metric assesses the model’s ability to differentiate 

between real and fake samples across various 

thresholds, giving insight into its robustness against 

class imbalance. 

   7. Baseline Comparisons 

Traditional models like SVM, Logistic Regression, and 

Random Forest are used as benchmarks. Deep learning 

baselines include standalone CNN and LSTM models 

for comparison. The hybrid CNN-LSTM-Attention 

model significantly outperforms the baselines on all 

metrics. The comparison demonstrates the importance 

of both spatial and temporal modeling in audio. AUC 

and F1 scores of the proposed model show high 

generalizability. Traditional models suffer from lack of 

feature expressiveness and require manual feature 

engineering. Deep-only models like CNNs or LSTMs 

are less effective than the hybrid approach. Results 

confirm that deepfake detection requires a multi-

dimensional modeling strategy. A performance 

summary table is included in the results section of the 

paper.  

4. Results  

  

The proposed CNN-LSTM model significantly 

outperformed traditional machine learning techniques 

like SVM and Logistic Regression, as well as 

standalone deep learning models such as CNN and 

LSTM, across all major evaluation metrics—accuracy, 

precision, recall, F1-score, and AUC. This underscores 

the benefit of combining convolutional layers for 

extracting spectral features with LSTM layers for 

capturing temporal patterns in audio data. We evaluated 

the model on publicly available datasets, the SceneFake 

dataset from Kaggle, which provided diverse and 

realistic examples of genuine and manipulated audio. 

The use of Mel-spectrograms as input allowed the 

model to identify subtle acoustic differences between 

real and fake speech. The hybrid architecture effectively 

learns both local and sequential features, improving its 

ability to detect deepfake audio with high reliability. 

Though not using Bidirectional LSTM, the single-

direction LSTM still provides strong temporal context, 

making the model well-suited for real-time or streaming 

applications. These promising results highlight the 

model’s potential for integration into systems that 

require voice authentication, audio forensics, and 

detection of synthetic media. The simplicity and 

efficiency of the architecture also make it practical for 

deployment on resource-constrained devices. Overall, 

the findings support the use of deep learning—

particularly CNN-LSTM hybrids—as a reliable solution 

to combat audio-based misinformation. This work 

aligns with the growing research interest in deepfake 

detection and is suitable for academic publication and 

broader deployment in trust-critical environments.  

 

 (%) (%) (%) (%) (%) 

Model Accurc

y 

Precisio

n 

Reca

ll 

F1-

Scor
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AU

C 

SVM 79.4 78.5 76.2 77.3 0.81 

Logistic 

regressio

n 

82.1 80.9 79..5 80.2 0.83 

CNN 88.6 86.9 87.2 87.1 0.90 

LSTM 90.3 89.5 88.6 89.0 0.96 

CNN-

LSTM 

(Propose

d) 

94.8 94.1 93.6 93.8 0.96 
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4. Discussion of Model  

 

    1.Comparison with Baseline Models 

The proposed CNN-LSTM model significantly 

outperforms both traditional machine learning and 

standalone deep learning approaches in the task of fake 

audio detection. Traditional classifiers such as Support 

Vector Machines (SVM) and Logistic Regression 

achieved accuracy scores of 79.4% and 82.1%, 

respectively. While standalone CNN and LSTM 

architectures showed improved results—88.6% and 

90.3%, respectively—the hybrid CNN-LSTM model 

reached a notable accuracy of 94.8%. This enhanced 

performance is primarily due to the synergy between the 

CNN’s ability to learn discriminative spectral features 

from Mel-spectrograms and the LSTM’s capability to 

model long-term temporal dependencies in the audio 

data. The model also demonstrated strong 

discrimination ability with an AUC of 0.96, confirming 

its effectiveness in real-world classification scenarios 

with imbalanced data. 

   2. Analysis of Precision, Recall, and F1-Score 

Evaluation metrics such as Precision (94.1%), Recall 

(93.6%), and F1-Score (93.8%) highlight the model’s 

reliability in differentiating fake from real audio. High 

precision means the model minimizes false positives, 

making it suitable for applications where flagging real 

audio as fake can have serious consequences—such as 

in forensics or authentication systems. Likewise, the 

high recall score indicates that the model can detect a 

majority of fake audio attempts, which is crucial in 

preventing misinformation or malicious audio 

manipulation. The balance between these two metrics, 

shown by the F1-Score, reflects the model’s well-

rounded performance across various deepfake 

scenarios. 

    3. Impact of CNN and LSTM Layers 

The CNN layers play a key role in capturing spectral 

features that are often altered in deepfake audio, such as 

frequency artifacts introduced by synthesis methods. By 

processing Mel-spectrogram inputs, these layers 

identify local acoustic inconsistencies and patterns. On 

the other hand, the LSTM layers excel at tracking the 

temporal structure of speech signals, learning patterns 

across time. Since fake audio often exhibits 

inconsistencies in prosody, rhythm, or transitions, the 

LSTM component helps in identifying these flaws 

effectively. The combination ensures that both short-

term and long-term characteristics of the audio are 

learned during training, improving detection accuracy. 

   4. Generalization and Robustness 

The model's performance was evaluated on benchmark 

datasets, including the SceneFake dataset from 

Kaggle, to validate its generalization ability. Despite the 

diversity in audio manipulation techniques across these 

datasets, the CNN-LSTM model maintained high and 

consistent performance. This suggests that the model is 

robust to different styles of synthetic audio and capable 

of adapting to previously unseen types of fake content. 

Such robustness is essential for real-world deployments 

where the nature of fake audio continues to evolve. 

    

   5. Limitations and Future Directions 

Despite its strong results, the CNN-LSTM model has 

certain limitations. The hybrid architecture demands 

moderate to high computational resources, making it 

less optimal for deployment in real-time or edge 

environments without optimization. Furthermore, since 

the model heavily depends on the quality of Mel-

spectrogram representations, performance may degrade 

in the presence of significant background noise or 

distortion. Future enhancements could include 

attention mechanisms, denoising pre-processing, or 

transformer-based architectures to improve 

robustness and reduce latency in real-time scenarios. 

 

5. Conclusion 

This project introduced a deep learning-based CNN-

LSTM architecture for the detection of deepfake audio 

using spectrogram-based features. Given the growing 

threat posed by fake audio content in media, 

authentication, and security domains, the need for 

reliable detection systems is critical. The CNN layers 

helped extract localized spectral features from audio 

spectrograms, while the LSTM layers effectively 

modeled the temporal structure of speech, identifying 

manipulations across time  

Extensive evaluations on SceneFake dataset 

demonstrated the superiority of the proposed model 

compared to traditional and standalone methods. The 

model achieved high scores in accuracy, precision, 

recall, and AUC, confirming its effectiveness for real-
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world deployment. Its adaptability across different 

datasets also highlights its potential for general use in 

detecting emerging audio deepfakes. 

While the current model shows excellent performance, 

further work can be directed toward reducing 

computation, enhancing noise robustness, and 

integrating real-time detection capabilities. This study 

lays a solid foundation for future research and 

applications aimed at ensuring trust and security in 

audio-based digital communication. 
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