
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 1

Tree Enumeration Using Image Analytics

Amal V, Shaik Md Asim, Ravi Teja, Lakshmi Swaroop, Dr Nagaraj SR

B.Tech, Computer Science and Engineering

Presidency University, Bangalore

May 2025

ABSTRACT--Accurate tree enumeration is essential for

ecological monitoring, urban planning, and forest

management. Traditionally, this task has been carried out

manually, which is not only time-consuming but also prone to

human error. This project aims to simplify and automate the

process of tree counting using image analytics. By leveraging

a deep learning-based object detection model—YOLOv8—

we trained the system to detect and count trees from aerial and

landscape images. The approach involves curating a custom

dataset, annotating it using tools like Roboflow, and training

the model on Google Colab. A simple web interface was

developed using Flask to allow users to upload an image and

receive real-time results showing the number and type of trees

detected. The model performed well on various test images,

showing a high detection accuracy. This system not only

reduces manual effort but also provides a scalable and

efficient solution for large-scale environmental data collection

Keywords: Tree enumeration, Image analytics, YOLOv8,

YOLOv9, YOLOv10, Deep learning, Object detection,

Streamlit, Python, OpenCV, TensorFlow, Environmental

monitoring, Forest management.

I. INTRODUCTION

Tree enumeration plays a vital role in environmental

conservation, urban development, and biodiversity studies. It

involves identifying and counting trees in a particular region,

which helps in monitoring forest cover, planning green spaces,

and evaluating the ecological impact of urbanization.

Traditionally, this process has been carried out through

manual surveys or the use of GPS-enabled devices, both of

which are time-intensive and often inaccurate, especially in

large or dense forest areas. With the advancement of computer

vision and deep learning, image-based analysis has emerged

as a powerful tool to automate and enhance the accuracy of

tree enumeration. In this project, we leverage image analytics

techniques using a custom-trained YOLOv8 model to detect

and count trees from aerial and landscape images.

Our system uses annotated datasets prepared via Roboflow,

and the model is trained on Google Colab for optimized

performance. To make the system user-friendly, a web

interface is developed using Flask, allowing users to upload

images and view detection results with tree count and

classification.

This automation not only speeds up the enumeration process

but also ensures consistency and scalability. It can be

particularly beneficial for forestry departments,

environmental researchers, and smart city planners. In the

long run, such solutions can contribute to better ecosystem

management and climate change monitoring by providing

timely and accurate data.

II. PROBLEM STATEMENT AND DOMAIN

OVERVIEW

Trees are an integral part of any urban environment,

contributing to ecological balance, air purification,

temperature regulation, and overall well-being. However, with

rapid urbanization and shrinking green spaces, it has become

increasingly important to monitor and manage tree cover

effectively. Traditionally, tree enumeration—counting and

cataloging trees—has relied on manual field surveys. While

accurate, these methods are highly resource-intensive, time-

consuming, and impractical for covering large areas,

especially in densely populated cities. Moreover, human-

based surveys are prone to inconsistencies and errors,

particularly when dealing with vast terrains or limited

manpower.

This project addresses the challenge of efficiently identifying

and counting trees by applying image analytics and machine

learning techniques. The aim is to automate the tree

enumeration process using aerial or satellite images and

computer vision algorithms. By leveraging advancements in

deep learning, particularly Convolutional Neural Networks

(CNNs), the system is trained to detect and classify tree

objects from images with high accuracy. This not only speeds

up the enumeration process but also enhances consistency and

scalability, making it suitable for government agencies, urban

planners, and environmental organizations.

The domain of this project lies at the intersection of computer

vision, environmental monitoring, and smart city planning.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 2

Using Python and machine learning frameworks like

TensorFlow and OpenCV, the system processes visual data to

extract meaningful insights about vegetation patterns. The

broader goal is to contribute to sustainable urban development

by enabling data-driven decisions around tree plantation,

deforestation control, and resource allocation. In summary,

this project falls within the domain of image analytics for

environmental applications, with a specific focus on

automating tree enumeration to support greener, smarter

cities.

III. OBJECTIVES

The primary objective of this project is to design and

implement an automated system capable of accurately

identifying and enumerating trees using image analytics. With

the growing need for efficient and scalable environmental

monitoring solutions, this project aims to bridge the gap

between traditional survey methods and modern

computational techniques by utilizing image-based machine

learning models. The system is intended to be robust, efficient,

and adaptable across different types of landscapes and tree

densities.Below are the detailed objectives of this work:

1. Develop an Image-Based Tree Detection Model:
The foremost goal is to construct a model that can detect trees

in aerial or satellite imagery with high precision. This involves

selecting appropriate datasets, preprocessing images, and

applying deep learning algorithms—especially Convolutional

Neural Networks (CNNs)—to train the model for reliable

object detection.
2. Enable Accurate Tree Enumeration:
The project seeks to automate the process of counting trees in

an image. The system should be able to distinguish individual

trees, even in densely vegetated regions, thereby enabling

accurate enumeration. This reduces the reliance on manual

surveys, saving time and manpower while minimizing errors.

3. Optimize the Model for Real-Time Use:

Another core objective is to ensure that the model runs

efficiently and can process images quickly enough to be useful

in real-world scenarios. The solution should be scalable so it

can handle large datasets and process high-resolution images

without significant lag or computational overhead.

4. Ensure Versatility Across Diverse Terrains:

Trees vary significantly in shape, size, and appearance across

different geographies. Therefore, the system must be trained

to recognize various tree types and adapt to diverse

environmental settings such as urban landscapes, semi-urban

areas, and natural forests.

5. Promote Environmental Data Collection and

Urban Planning:

A long-term objective of this project is to provide a tool that

assists city administrators, urban planners, and environmental

agencies in tracking tree coverage, planning green spaces, and

implementing sustainability programs. Automated tree

enumeration can serve as a key input for urban development

projects and environmental conservation efforts.

6. Validate and Analyze Performance Metrics:

The model's performance must be evaluated using standard

metrics such as accuracy, precision, recall, and F1-score. This

helps in quantifying the effectiveness of the detection and

enumeration processes and identifying areas for further

improvement.

7. Create a User-Friendly Workflow:

While technical accuracy is critical, ease of use is equally

important. One of the project’s aims is to package the

workflow in a way that can be adopted by non-technical

stakeholders, possibly through a simple GUI or script-based

interface.

In essence, this project focuses on applying computer vision

and deep learning to solve a real-world environmental

problem, with the ultimate goal of supporting smart,

sustainable cities through accurate, automated tree

monitoring.

IV.TECHNICAL OVERVIEW &

ARCHITECTURE

The Tree Enumeration Using Image Analytics system is built

using a modular architecture that separates the frontend,

backend, and model inference layers. This separation ensures

better maintainability, scalability, and adaptability of the

platform for different use cases and environments. The

solution combines classical web development with deep

learning to create a streamlined process for analyzing drone-

captured or aerial imagery to detect and count trees. At a high

level, the system takes in high-resolution images—captured

either through drones, satellites, or any aerial imaging

source—and processes them using deep learning techniques to

detect individual trees and count them. The core pipeline

involves several stages: image acquisition, preprocessing,

model training, object detection, result post-processing, and

visualization.

The entire pipeline is developed using Python, leveraging key

libraries like TensorFlow, Keras, OpenCV, and NumPy. For

object detection, the project utilizes the YOLO (You Only

Look Once) architecture, specifically trained to recognize tree

shapes and patterns.

The system architecture is divided into two major

components: the frontend and the backend. These components

work in coordination to handle the entire flow from image

input to object detection output. The backend also integrates a

pre-trained YOLOv5 (You Only Look Once version 5) model

that serves as the core of the detection logic, while the frontend

focuses on presenting the interaction layer to the user.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 3

IV.I Frontend Development

The frontend of the application is built using HTML, CSS, and

JavaScript, designed to be lightweight and highly responsive.

Users can upload aerial images through a clean interface,

which then triggers the detection process. The interface also

handles the rendering of the output image with bounding

boxes and the final count of detected trees. The design

prioritizes clarity and accessibility, especially since users may

not have technical expertise in deep learning or image

analytics.

JavaScript manages the interactivity, including handling file

uploads, calling backend APIs, and dynamically displaying

the processed results. CSS is used to ensure that the layout

adapts well to different screen sizes. Where needed, frontend

frameworks such as Bootstrap can be employed to enhance

responsiveness and styling, although the overall UI is

intentionally kept minimal to avoid overwhelming the user.

Below are the listed Frontend technologies:

• HTML: The structural foundation of the web-based

frontend is built using HTML (HyperText Markup Language).

This markup language is used to define the overall layout of

the user interface, including elements such as the image

upload section, response display area, and interface buttons.

HTML provides the semantic framework upon which all other

frontend components rely.

• CSS: To style and format the user interface, CSS

(Cascading Style Sheets) is employed. It enhances the visual

presentation of the HTML structure, ensuring the platform is

visually appealing, responsive, and easy to use. CSS helps in

adjusting the layout for various screen sizes, maintaining

consistency in font styles, margins, paddings, and other visual

elements, thus improving user experience across devices.

• JavaScript: The application’s interactivity is

primarily driven by JavaScript, which handles client-side

scripting. JavaScript is used to enable real-time actions such

as image selection, form validation, sending API requests to

the backend, and rendering the processed output. It acts as the

communication bridge between the user interface and the

backend service, facilitating asynchronous behavior through

AJAX or Fetch APIs.

IV.II Backend Development

The backend is built using Python, leveraging the Flask web

framework to manage server-side logic and API

communication. When a user uploads an image through the

frontend, Flask receives the request and initiates the detection

pipeline. The image is first preprocessed, resized, normalized,

and formatted and then passed into a deep learning model

based on YOLOv5, which has been trained on a custom

dataset of aerial images annotated with tree positions.

YOLOv5 is chosen for its efficiency and high performance in

object detection tasks. It processes the image in a single

forward pass, identifying multiple trees and their locations in

near real-time. After detection, post-processing techniques

such as non-maximum suppression (NMS) are applied to

eliminate redundant bounding boxes. The final output

includes a visual representation with bounding boxes drawn

around each detected tree and a numeric count of total

detections. Libraries such as OpenCV and NumPy are used in

this phase to handle image manipulation and array operations.

The backend then returns the result as a JSON response, which

is received by the frontend and rendered back to the user.

Below is a breakdown of the architecture and technologies

used for Backend.

• Python: The core processing logic, including model

loading and image analysis, is handled using Python on the

backend. Python is selected for its rich ecosystem of libraries

and ease of integrating deep learning models. It provides the

flexibility to write clean, maintainable code while efficiently

managing resource-heavy image operations and model

inference.

• Flask: To implement the web server and create API

endpoints, Flask, a lightweight web framework in Python, is

used. Flask acts as the intermediary between the frontend and

the deep learning model. When a user uploads an image, Flask

receives the request, invokes the detection logic, and then

returns the output (such as tree count and processed image)

back to the frontend. Flask’s simplicity and modular design

allow for quick development and customization.

• YOLOv5: At the heart of the detection system lies

YOLOv5 (You Only Look Once, version 5), a highly efficient

deep learning model known for real-time object detection

capabilities. YOLOv5 takes the uploaded aerial image as input

and processes it through a convolutional neural network

(CNN) to identify and localize trees. This model was trained

on a dataset of annotated tree images and is capable of

recognizing tree features even at varying scales and angles. Its

balance between speed and accuracy makes it ideal for this

type of real-world, large-image detection task.

• OpenCV: To handle image processing operations,

OpenCV (Open Source Computer Vision Library) is

integrated within the backend. OpenCV is used for

preprocessing steps such as image resizing, format

conversion, and overlaying bounding boxes on the detection

results. Its optimized routines help reduce processing time and

improve compatibility with the YOLOv5 output format.

• NumPy: The application also utilizes NumPy, a

fundamental Python library for numerical computations.

NumPy supports the manipulation of image arrays and

facilitates interaction between OpenCV and YOLOv5 outputs.

It is particularly useful during model input preparation and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 4

output decoding stages, where performance and matrix

operations are critical.

• RESTful API: The communication between the

frontend and backend is established via a RESTful API

protocol. This architecture allows the frontend to send image

files using HTTP POST requests and receive structured data

such as bounding box coordinates and tree count in return.

REST ensures that the system remains stateless, scalable, and

simple to integrate with additional tools or dashboards if

needed in the future.

• Model Weights and Checkpoints: The YOLOv5

model operates based on pre-trained weights that are stored

locally on the server. These weights were obtained by training

on a custom dataset consisting of labeled tree images. During

inference, these checkpoints are loaded dynamically to ensure

faster processing and high detection accuracy.

IV.III Data Handling and Communication

The system does not require long-term storage of images or

user sessions, making it suitable for stateless operation.

Images are temporarily handled in memory or in a cache

directory during processing The communication between

frontend and backend is RESTful, with HTTP POST

requests used to transmit uploaded images. The backend

responds with processed data including detection

confidence, coordinates of detected trees, and overall count,

which the frontend then visualizes accordingly.

IV.IV Scalability and Deployment Considerations

The platform is designed with future scalability in mind. The

backend system, including the YOLOv5 model and Flask

server, can be containerized using Docker and deployed to

cloud environments such as AWS EC2, Google Cloud Run,

or Azure App Services. This enables the system to scale

horizontally and handle larger datasets or multiple

concurrent users without a drop in performance.

Security can also be integrated in future iterations using JWT

(JSON Web Tokens) or OAuth2, to support authenticated

user access and usage tracking if required by institutional or

governmental clients.

Figure 1. Architecture

V. DATA FLOW AND PROCESS

The Tree Enumeration Using Image Analytics system

follows a streamlined, modular data flow that integrates

frontend interaction, backend processing, and deep learning

inference. The entire process begins with the user uploading

an aerial image—typically captured via a drone or satellite—

through the web interface. This image serves as the input for

the detection system.

Once the image is submitted, the frontend, developed using

HTML, CSS, and JavaScript, collects the file and sends it to

the backend server via a RESTful API. At this point, Flask,

the backend web framework, receives the image and

temporarily stores it on the server for processing. This

separation of client and server interaction ensures that large

image files can be handled efficiently without overloading

the user’s device.

The backend then invokes a Python-based detection module,

where the YOLOv5 model is loaded with pre-trained

weights. Before inference, the image undergoes

preprocessing using OpenCV, which ensures it is resized,

formatted, and optimized for model compatibility. The

processed image is passed through YOLOv5, which analyzes

it and outputs detection results in the form of bounding box

coordinates, confidence scores, and class labels.

• Image Acquisition and Transmission: The

process begins when a user uploads an aerial image—usually

captured via drone or satellite—through a simple web-based

interface built using HTML, CSS, and JavaScript. Once the

image is selected, it is transmitted to the backend using a

RESTful API. This decoupling between frontend and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 5

backend ensures that the system can handle large image files

without affecting user experience.

• Backend Processing and Detection: Upon

receiving the image, the Flask-based Python server

temporarily stores it for analysis. The image is then

preprocessed using OpenCV to standardize its dimensions

and format. The preprocessed image is passed through a

YOLOv5 deep learning model, which identifies and counts

trees by drawing bounding boxes around each one. Detection

outputs include object coordinates, labels, and confidence

scores, which are essential for accurate enumeration.

• Result Rendering and Display: Once detection is

complete, OpenCV is again used to overlay the results on the

original image, highlighting each tree detected. The total

count and annotated image are then sent back to the frontend.

JavaScript dynamically updates the webpage to display the

processed image and the final tree count, giving users a

visual and numerical understanding of tree distribution.

After detection, the system uses OpenCV again to draw

bounding boxes around each detected tree and count the total

number of trees. This output image, along with the numeric

count, is then sent back to the frontend. JavaScript on the

client side dynamically renders the annotated image and

displays the count to the user.

This complete data pipeline—from image upload to result

visualization—is designed for low latency and high

accuracy. It ensures that users receive near-instant feedback,

enabling efficient tree enumeration from vast aerial datasets.

Figure 2 - Data Fetching Architecture

VI. SECURITY CONSIDERATIONS

While the primary focus of this project is on accurate tree

enumeration using image analytics, data security and user

privacy are also essential considerations—especially when

dealing with potentially sensitive geospatial imagery. Though

the system was not designed for commercial-scale

deployment, best practices were still followed to ensure basic

security compliance.

The first level of security is maintained during image upload

and transmission. Images submitted by users are sent over

HTTP requests, and in future deployments, this should be

upgraded to HTTPS to ensure end-to-end encryption. This

prevents interception or tampering of the data while in transit

between the frontend and backend systems.

On the server side, image files are only stored temporarily and

are processed within a controlled environment. No permanent

database is used to retain user-submitted images, which helps

minimize the risk of unauthorized access or data leaks.

Implementing temporary storage limits and auto-deletion after

processing further enhances safety. Below are the detailed

security considerations:

• Secure Data Transmission and Temporary

Storage: The system handles image uploads through HTTP

requests from the frontend to the backend. To improve

security in future deployments, HTTPS should be

implemented to ensure encrypted data transmission.

Currently, images are stored temporarily on the server only for

the duration of processing. Once detection is complete, these

images can be auto-deleted, reducing the risk of data leakage

or unauthorized access.

• Input Validation and Attack Prevention: To

protect the backend from malicious inputs, the system

enforces strict file validation. Only image files of specific

formats (such as .jpg or .png) are accepted. Flask’s request

handling mechanisms, along with Python's built-in exception

handling, help sanitize file names and prevent code injection

or file traversal attacks. This ensures that the backend remains

stable and resistant to basic exploit attempts.

• Scalability and Access Control for Future Use:

Although the current prototype does not require user

authentication, the architecture allows for scalable security

features to be added. If expanded to support multiple users or

cloud deployment, secure login mechanisms using JWT

(JSON Web Tokens) or OAuth can be integrated. This would

help ensure that only authorized users can upload and access

image data, strengthening access control and audit

capabilities.

In terms of backend logic, the system is safeguarded against

common vulnerabilities such as code injection and malformed

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 6

file uploads by validating all incoming data. Flask’s built-in

request handling and Python’s exception management are

used to sanitize file names and restrict file types to known,

safe formats such as JPG and PNG.

While user authentication is not currently implemented—as

the application is single-user and prototype-based—it can be

added using token-based systems such as JWT if scaled

further. This would allow only authorized users to upload and

process images, adding an extra layer of access control.

Overall, the system architecture adopts a “process-and-forget”

model, where data is not stored long-term and the focus

remains on secure, session-based operations. This lightweight

but mindful approach ensures that even in a basic

implementation, core security principles are respected.

VII. TESTING & DEPLOYMENT

Ensuring the reliability and functionality of the tree

enumeration system required a structured approach to both

testing and deployment. Given the real-time nature of image-

based detection, it was essential to validate each stage of the

process—from image upload to final result visualization—to

confirm accuracy, robustness, and responsiveness .

VII.1 Testing Phase

Testing was conducted in two main areas: frontend

functionality and backend inference accuracy. On the

frontend, different image formats, resolutions, and sizes were

tested to ensure that the upload mechanism functioned without

crashing or losing data. JavaScript console logs and manual

test cases were used to identify and fix interface-related bugs,

particularly in rendering results and handling slow network

conditions.

Backend testing focused heavily on the performance of the

YOLOv5 detection model. Multiple drone-captured images

with varying densities of tree cover were passed through the

model to evaluate its precision in detecting and counting trees.

During this phase, OpenCV overlays were cross-verified

against the expected number of trees in ground-truthed

images. Edge cases such as overlapping trees, low-resolution

inputs, and poor lighting conditions were also tested to ensure

the model's resilience.

• Unit Testing of Model Components: Initial testing

was carried out to verify the functionality of the YOLOv5

detection model independently. Sample drone images were

processed in isolation to confirm that the model loaded

correctly, predicted bounding boxes, and output the expected

number of tree detections.

• Input Image Validation: Various types of test

images—differing in resolution, lighting, and background

complexity—were uploaded through the frontend to check if

the system could handle them gracefully. Special attention

was given to edge cases like blurry images, images with

overlapping trees, or low contrast.

• Backend API Testing: Flask-based API routes were

tested using Postman to simulate image upload requests. The

goal was to ensure the server could accept files, trigger model

inference, and return results without crashing or timing out.

API responses were monitored for latency, error handling, and

result consistency.

• Functional Frontend Testing: The frontend was

tested to ensure a smooth user experience. Tests included

verifying that file inputs worked, loading indicators were

shown during processing, and the processed image with

bounding boxes was displayed correctly. Browser console

logs helped identify minor bugs in asynchronous behavior.

• Model Accuracy Evaluation: To validate model

performance, outputs were visually compared against

manually counted trees in sample images. This helped

measure the model’s detection accuracy and identify under-

detection or over-detection scenarios.

• Integration Testing: Finally, end-to-end testing was

done to simulate the complete flow—from image upload,

model processing, to result display. This ensured all

components worked together without breaking the pipeline.

VII.II Deployment Phase

The final application was deployed in a local server

environment for demonstration purposes. Flask was used to

serve the model and handle API endpoints, while the frontend

was hosted on a local browser setup. Though this was not a

cloud-based deployment, the architecture allows for smooth

migration to cloud services like AWS or Google Cloud in the

future. In such cases, containerization tools like Docker could

be used to encapsulate the application for better scalability and

maintainability.

Overall, testing and deployment were iterative and informed

by real-world usage scenarios, resulting in a system that is not

only functional but also adaptable for future expansion.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 7

Figure 3 - Deployment diagram

The deployment of the tree enumeration system was carried

out in a staged manner, starting with local hosting and keeping

future scalability in mind. Below are the detailed steps

involved in the deployment process:

• Environment Setup: The system was initially

deployed in a local development environment. This included

setting up Python and Flask for the backend, installing

required dependencies using pip, and ensuring compatibility

with libraries such as OpenCV and PyTorch (for YOLOv5). A

virtual environment was created to isolate dependencies and

prevent version conflicts.

• Frontend Hosting: The frontend was developed

using HTML, CSS, and JavaScript, and was hosted using a

local HTTP server. The web interface was linked to Flask's

REST API to facilitate image upload and result retrieval. Form

submissions were handled asynchronously to ensure smooth

user interaction.

• REST API Configuration: Flask routes were

created for handling POST requests from the frontend. This

included secure endpoints for image upload, triggering model

inference, and returning results. Proper error handling was

implemented to catch exceptions during image processing and

inference.

• Testing in Localhost: The system was run and tested

on localhost to simulate user interactions. Tools like Postman

and browser-based testing were used to validate the flow of

data and the responsiveness of the application. Logs were

monitored to detect any bottlenecks or performance issues.

• Optional Future-Ready Deployment: While the

system is currently deployed on a local server, it is designed

to be cloud-ready. Containerization using Docker is planned

for the future, allowing the app to be easily deployed on cloud

platforms such as AWS EC2, Google Cloud Run, or Heroku.

This will also enable scalability, multi-user access, and

persistent storage if needed.

• Security and Maintenance: Temporary storage

management was configured to ensure that uploaded images

were deleted after processing. The system’s modular design

also allows easy updates to the model or frontend interface

without affecting the entire application.

VIII. CHALLENGES & SOLUTIONS

During the development of the tree enumeration system, our

team encountered a variety of challenges, ranging from

technical limitations to model performance and even usability

considerations. Each obstacle required careful

troubleshooting, research, and collaboration to resolve. Below

are some of the key challenges we faced and the solutions we

implemented:

1. Adapting YOLOv5 to Aerial Tree Detection

One of the first major challenges we faced was tuning the

YOLOv5 object detection model to work effectively with

aerial images of trees. Unlike common use cases of YOLO,

such as detecting vehicles or humans, trees captured from

above often appeared as irregular shapes with variable

shadows and textures. This made detection less accurate in the

beginning.

Solution:

To overcome this, we trained the model using a diverse dataset

of aerial forest and tree canopy images. We supplemented this

with data augmentation techniques such as random rotations,

flips, and brightness adjustments to improve model

generalization. We also fine-tuned YOLO’s confidence

threshold to reduce false positives and enhance detection

accuracy.

2. Performance Bottlenecks in Image Processing

Another issue arose in the backend while processing high-

resolution drone images. These large images caused slow

inference times, especially when multiple detections were

involved. It also put strain on memory usage, affecting the

Flask server’s responsiveness.

Solution:

We optimized the image processing pipeline by resizing input

images before inference and using efficient OpenCV methods

for overlaying bounding boxes. Flask’s multithreading

capabilities were utilized to handle concurrent requests, and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 8

temporary files were cleared immediately after processing to

reduce memory load.

3. Frontend Integration and Image Feedback Loop

Connecting the frontend with the backend was a challenge,

particularly when displaying the result image (with tree

detections) back to the user. File handling and asynchronous

communication often resulted in broken responses or blank

result areas.

Solution:

We used JavaScript’s fetch API along with FormData objects

to send images via POST requests and receive processed

images as blobs. On the Flask side, we ensured the response

returned the image as a downloadable stream. This helped

maintain a smooth data flow between the frontend and

backend. We also added simple loading animations and error

messages to inform the user in case of issues.

4. Dealing with Low Accuracy in Dense Vegetation

In areas with dense tree cover, the model sometimes

miscounted trees—either grouping multiple trees together or

failing to detect some entirely due to shadow overlap or

similar texture in the background.

Solution:

We manually analyzed such cases and experimented with

different image contrast settings before feeding them into the

model. In future versions, we plan to use multi-scale detection

techniques or ensemble models to improve performance in

densely forested regions.

5. Lack of Real-time Testing Opportunities

Since the model was designed to work with drone images, we

couldn’t frequently test it with real-time drone footage due to

limited access to drones and flight permissions.

Solution:

We gathered publicly available aerial datasets and simulated

drone input by stitching images or creating test batches. While

this wasn’t a perfect replacement for real-time testing, it

helped us iterate quickly during development and validate the

model in various conditions.

6. Deployment Constraints

Due to resource limitations, we couldn’t host the system on a

cloud server, which would have allowed remote usage and

better scalability. Local deployment restricted testing to a

small environment and limited user access.

Solution:

We structured the codebase and API routes to be easily

portable to a cloud platform in the future. With minor changes

and containerization (e.g., using Docker), the entire

application can be migrated to services like AWS EC2 or

Google Cloud.

These challenges were not just roadblocks—they became part

of the learning journey that helped us improve our technical

understanding, collaboration skills, and problem-solving

mindset. By facing these hurdles head-on, we were able to

build a more stable and effective tree enumeration system.

IX. FUTURE ENHANCEMENTS

While the current version of the tree enumeration system

successfully detects and counts trees from aerial images, there

is plenty of room for growth and innovation. Several future

enhancements have been identified that could significantly

improve both the performance and usability of the system.

One of the most promising upgrades is integrating GPS and

geotagging features. By linking the image data with location

metadata, we could provide users with not just the number of

trees, but also their exact locations on a map. This would be

incredibly valuable for forest management, environmental

audits, and afforestation tracking.

We also aim to deploy the application to the cloud, making it

accessible as a web-based service. Currently, the system runs

locally, limiting its use to a single environment. By moving to

platforms like AWS or Google Cloud, users from different

locations could upload images and receive results without

needing to install anything. Another key enhancement is to

improve model performance on dense forests. In areas where

tree canopies overlap, YOLOv5 sometimes struggles to detect

individual trees. Exploring more advanced models like

YOLOv8 or even incorporating instance segmentation

methods (e.g., Mask R-CNN) could help solve this issue.

Lastly, we’d like to build a feedback loop where users can

manually correct or confirm detections, which the model can

learn from over time. This would enable continuous

improvement and adapt the system to new terrains and tree

species.

X. CONCLUSION

The development of the Tree Enumeration Using Image

Analytics system has been a rewarding journey filled with

both technical challenges and valuable learning experiences.

The project successfully demonstrates how modern image

processing techniques and deep learning models like YOLOv5

can be applied to solve real-world environmental problems,

specifically in the field of forestry and green cover

assessment. By automating the detection and counting of trees

from aerial images, the system offers a scalable and efficient

alternative to traditional manual surveys. It reduces the time,

effort, and human error typically involved in tree census

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47892 | Page 9

activities, making it a practical solution for government

bodies, researchers, and environmental organizations alike.

The integration of a simple frontend interface with a Flask-

based backend ensures that users can interact with the model

easily, upload images, and receive visual results with marked

detections.

Throughout the process, we encountered numerous

obstacles—from handling diverse image inputs to optimizing

model accuracy—but each challenge contributed to a deeper

understanding of model tuning, data flow, and system

integration. Although the project was deployed locally due to

resource limitations, the architecture is designed with future

scalability in mind. Looking ahead, there are exciting

opportunities to enhance the system with features like GPS

integration, cloud deployment, and feedback-based learning.

These improvements could help position the tool as a valuable

asset in environmental monitoring and smart city planning.

In essence, this project represents a small but meaningful step

toward harnessing AI for sustainable development and

ecological awareness. It shows how technology can support

data-driven decision-making in environmental conservation.

With further development, this system has the potential to be

adopted on a larger scale and become an essential tool in

digital forestry initiatives.

XI. REFERENCES

[1] A. Landstrom and M. J. Thurley, ‘‘Morphology-based

crack detection for steel slabs,’’ IEEE J. Sel. Topics Signal

Process., vol. 6, no. 7, pp. 866–875, Nov. 2012.

[2] K. Song and Y. Yan, ‘‘A noise robust method based on

completed local binary patterns for hot-rolled steel strip

surface defects,’’ Appl. Surf. Sci., vol. 285, pp. 858–864, Nov.

2013, doi: 10.1016/j.apsusc.2013.09.002.

[3] Y. J. Jeon, D. Choi, S. J. Lee, J. P. Yun, and S. W. Kim,

‘‘Steel-surface defect detection using a switching-lighting

scheme,’’ Appl. Opt., vol. 55, no. 1, pp. 47–57, 2016, doi:

10.1364/AO.55.000047.

[4] R. Girshick, J. Donahue, T. Darrell, U. Berkeley, and J.

Malik, ‘‘R-CNN: Region-based convolutional neural

networks,’’ in Proc. Comput. Vis. Pattern Recognit., Jun.

2014, pp. 2–9. 148824 VOLUME 12, 2024 T. Zhang et al.:

GDM-YOLO: A Model for Steel Surface Defect Detection

Based on YOLOv8s

[5] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf.

Comput. Vis. (ICCV), Dec. 2015, pp. 1440–1448.

[6] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid

pooling in deep convolutional networks for visual

recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,

no. 9, pp. 1904–1916, Sep. 2015, doi:

10.1109/TPAMI.2015.2389824.

[7] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN:

Towards real-time object detection with region proposal

networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,

no. 6, pp. 1137–1149, Jun. 2017.

[8] Y. Xu, D. Li, Q. Xie, Q. Wu, and J. Wang, ‘‘Automatic

defect detection and segmentation of tunnel surface using

modified mask R-CNN,’’ Measurement, vol. 178, Jun. 2021,

Art. no. 109316.

[9] M. Chen, L. Yu, C. Zhi, R. Sun, S. Zhu, Z. Gao, Z. Ke, M.

Zhu, and Y. Zhang, ‘‘Improved faster R-CNN for fabric defect

detection based on Gabor filter with genetic algorithm

optimization,’’ Comput. Ind., vol. 134, Jan. 2022, Art. no.

103551.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

‘‘You only look once: Unified, real-time object detection,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2016, pp. 779–788.

[11] C.-Y. Wang, A. Bochkovskiy, and H.-Y.-M. Liao,

‘‘YOLOv7: Trainable bag-of-freebies sets new state-of-the-

art for real-time object detectors,’’ in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun., vol. 2023, pp.

7464–7475.

[12] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental

improvement,’’ 2018, arXiv:1804.02767.

[13] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX:

Exceeding YOLO series in 2021,’’ 2021, arXiv:2107.08430.

[14] M. Ma and H. Pang, ‘‘SP-YOLOv8s: An improved

YOLOv8s model for remote sensing image tiny object

detection,’’ Appl. Sci., vol. 13, no. 14, p. 8161, Jul. 2023, doi:

10.3390/app13148161.

[15] H. Nie, H. Pang, M. Ma, and R. Zheng, ‘‘A lightweight

remote sensing small target image detection algorithm based

on improved YOLOv8,’’ Sensors, vol. 24, no. 9, p. 2952, May

2024.

http://www.ijsrem.com/

