j.-t' “ARe
; IJSREM\

h .o g7 International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

TutorHub: A Mobile-Based Peer-to-Tutor Learning and Earning Ecosystem
Using Kotlin and Firebase

Dr. Smitha Patil, Associate Professor, SMVIT,
Akash Kumar, Student, SMVIT,
Arohan Singh, Student, SMVIT,
Ashish Kumar, Student, SMVIT,
Ayush Kumar, Student, SMVIT

Abstract - The increasing demand for flexible and
accessible learning has encouraged the development of
mobile solutions that connect learners with subject-matter
experts. This study presents TutorHub, an Android-based
application designed to bridge students and tutors through
a structured digital learning environment. Built using
Kotlin and Jetpack Compose with Firebase as the backend,
the platform enables students to learn topics, post queries,
request live sessions, and access video or written solutions.
Tutors can schedule sessions, provide solutions, and earn
remuneration based on their engagement and student
feedback. The system introduces a mutual scheduling
mechanism that allows both stakeholders to negotiate
session timings, ensuring adaptability and minimizing
conflicts. The paper outlines the system architecture,
workflow, data management, and real-time communication
strategies. Experimental evaluation indicates that the
platform delivers a seamless, responsive, and scalable

learning experience suitable for modern education
ecosystems.
Key Words: Android Application Development, Kotlin,

Jetpack Compose, Firebase, Cloud Firestore, Razorpay, Mobile
Learning

1.INTRODUCTION

The rapid growth of mobile technologies has transformed the
way students access educational resources and interact with
learning communities. With increasing academic workload and
diverse subject requirements, learners often face delays in
obtaining timely guidance from teachers or peers. Traditional
tutoring models are limited by fixed schedules, geographical
constraints, and lack of instant communication. As a result,
students frequently turn to online platforms for quick
explanations, doubt resolution, and skill-based learning.
However, many existing systems either rely on rigid class
structures, high subscription costs, or offer limited tutor—student
interaction.

TutorHub addresses these challenges by introducing a flexible,
on-demand learning environment that connects students directly
with qualified tutors through a mobile application. The platform
supports a dual-role structure—Student and Tutor—ensuring
that each user interacts with features specifically designed for
their needs. Students can post questions, request written or
video-based solutions, schedule interactive sessions, and
evaluate tutor performance. Tutors can browse open queries,
provide solutions, negotiate class timings, and earn based on
their contributions. This model promotes transparency,
personalization, and accessibility in the learning process.
Overall, TutorHub aims to create a seamless, reliable, and user-
centric learning ecosystem that aligns with modern educational
demands. It demonstrates how mobile technologies, cloud

computing, and intuitive Ul frameworks can be combined to
support personalized learning and foster meaningful academic
interaction.

2. IMPLEMENTATION

The implementation of TutorHub focuses on integrating modern
Android development frameworks with Firebase cloud services
to create a responsive, secure, and role-based tutoring platform.
The system follows the MVVM (Model-View—ViewModel)
architecture to ensure modularity, maintainability, and clear
separation between Ul components and business logic.

The application is developed using Kotlin and Jetpack
Compose, which provide a declarative approach to UI design.
This enables dynamic interface updates based on real-time data
changes from Firebase. Each module—authentication, question
posting, media upload, session scheduling, and ratings—has
been implemented as a self-contained component to maintain
scalability.

Data is managed using Firebase Cloud Firestore, which serves
as the central storage for user profiles, queries, solutions,
session requests, and ratings. Firebase Authentication handles
secure login and user role mapping, while Firebase Storage
supports upload and retrieval of multimedia content such as
images and video solutions. Cloud Functions are used to
automate event-driven tasks such as payment verification and
push notifications.

The application also implements real-time listeners to monitor
changes in Firestore collections, enabling instant updates for
session requests, solution postings, and schedule responses.
This ensures a smooth and interactive user experience without
requiring manual refreshes.

Table-1:Implementation Components and Technologies Used

Component/Module Technology/Framework
User Interface Jetpack Compose
Programming Language Kotlin

Architecture Pattern MVVM

Authentication Firebase Authentication
Database Cloud Firestore

Media Storage Firebase Cloud Storage
State Management Stateflow/Livedata
Payment Workflow Razorpay

Notifications Firebase Cloud Messaging

2.1 User Authentication Module
The authentication module verifies user identity and assigns the
appropriate role. When users register, they select either

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM54257 |

Page 1

https://ijsrem.com/

j.-t' “ARe
¢ TISREM 3

h .o g7 International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

Student or Tutor, and this role is stored in Firestore. Firebase
Authentication provides secure token generation, preventing
unauthorized access to restricted resources. During login, the
application retrieves the user’s role to configure the correct
dashboard and permissions.

2.2 Question Posting and Solution Module

Students can submit questions using text descriptions and
optional images. The data is stored in the Firestore "questions"
collection. Tutors browse available questions and may select
queries matching their expertise. Solutions can be submitted as
text, PDFs, or recorded videos, which are uploaded to Firebase
Storage. Firestore stores the metadata, ensuring students can
view and download the content.

2.3 Session Scheduling Module

A key component of TutorHub is its mutual scheduling
mechanism. When students request a session, tutors receive a
real-time notification. Tutors can propose time slots, and
students may either accept or counter-propose. This negotiation
continues until both parties confirm a final schedule. All
interactions are managed through Firestore documents with
status fields, ensuring atomic updates and preventing double
bookings.

2.4 Payment Validation (If included)

Paid services such as video sessions require secure payment
handling. When a payment is initiated, a temporary record is
created. After external validation (e.g., Razorpay webhook),
Firebase Cloud Functions update the payment status and
unlock session access for the student. This ensures fraud
prevention and smooth financial workflow management.

2.5 Ratings and Feedback Module

After receiving a solution or completing a session, students can
rate tutors. Ratings help tutors build credibility and improve
visibility in the application. These ratings are stored in a
separate Firestore collection and aggregated dynamically for
tutor profiles.

2.6 Notifications and Real-Time Updates
Real-time responsiveness is achieved using:

e Firestore real-time listeners

e Firebase Cloud Messaging

e Reactive UI with Compose + StateFlow
Students instantly receive alerts for new solutions, schedule
proposals, and session confirmations. Tutors are notified when
new questions become available or feedback is provided.

3. DATABASE DESIGN

The database design of TutorHub is structured to support
real-time interactions between students and tutors while
ensuring consistency, scalability, and secure access.
Since the application uses Firebase Cloud Firestore, the
database follows a NoSQL document-oriented model,
where data is stored in collections and subcollections
rather than rigid relational tables. This provides
flexibility for dynamic content such as questions,
sessions, and media files.

The design focuses on modularity, ease of querying, and
minimal read/write overhead. Each collection represents
a core entity of the system—Users, Questions, Solutions,

Requests, Sessions, and Ratings. The schema is
optimized to support real-time listeners and reduce
repeated data fetches.

Table-2:Collections and their Attributes

Collection name | Key attributes

Users userld, name, email, role, bio,
expertise, rating, joinedOn

Questions questionld, studentld, title,
description, imageUrl, timestamp,
status

Solutions solutionld, tutorld, questionld,
textSolution, videoUrl, createdOn

Sessions sessionld, studentld, tutorld,
finalSlot, meetingLink,
paymentStatus, sessionStatus

SessionRequests notificationld, userld, type, message,
timestamp, isRead

Ratings ratingld, studentld, tutorld, score,
feedback, createdOn

Notifications notificationld, userld, type, message,
timestamp, isRead

4. CONCLUSION

TutorHub presents a modern, flexible, and user-centric
mobile platform designed to bridge the gap between
students seeking academic support and tutors offering
subject expertise. By integrating Kotlin with Jetpack
Compose on the frontend and Firebase services on the
backend, the system achieves a seamless combination of
responsive interface design, real-time data
synchronization, and robust cloud-based functionality.
The dual-role architecture ensures that students and tutors
interact with dedicated workflows tailored to their

requirements, enabling efficient doubt resolution,
personalized learning sessions, and transparent
communication.

A key strength of TutorHub lies in its mutual scheduling
mechanism, which allows negotiation between students
and tutors for finalizing suitable timings. This dynamic
approach eliminates the rigidity associated with
traditional tutoring platforms and enhances user
autonomy. The implementation of real-time listeners,
secure authentication, cloud storage, and automated
backend processes ensures that users experience fast,
reliable, and secure interactions across the application.

Overall, the system demonstrates how emerging mobile
development frameworks and cloud technologies can be
combined to create scalable and accessible learning
environments. TutorHub successfully addresses the
limitations of existing academic assistance platforms by
offering flexibility, transparency, and interactivity. The
project lays a strong foundation for future expansion,
potentially integrating intelligent tutor recommendations,
automated solution evaluation, adaptive learning
pathways, and built-in video calling capabilities. Through

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM54257 |

Page 2

https://ijsrem.com/

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586

International Journal of Scientific Research in Engineering and Management (IJSREM)

ISSN: 2582-3930

continuous improvements, TutorHub can evolve into a
comprehensive digital education ecosystem suitable for
diverse learners and tutors.

5. REFERENCES

[1] Taylor & Francis, 2025 — Thuy Dung Pham Thi, Van Kien
Pham & Nam Tien Duong e Title: “Understanding M-learning App
Adoption: An Integrated Model for College Students”

[2] IEEE 13th International Conference on Engineering
Education (ICEED), 2024 — Roshaliza M Ramli e Title: “Students'
Learning Performance Through M-learning Integration in
Engineering Courses”.

[3] IEEE Conference ICDSAAI, 2022 — N. Deepa, J. Sathya
Priya, Devi. T e Title: “Online E-learning Mobile Application for
Self-learning”

[4] IEEE ICATIECE, 2022 — Wei Zhou, Xiyang Sun e Title:
“The Design of English Mobile Learning Software Based on
Android Application”

© 2025, 1JSREM | https://ijsrem.com DOI: 10.55041/IJSREM54257

Page 3

https://ijsrem.com/

