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ABSTRACT 

We prove that the rational solutions exist for the 

integrable version of the discretized nonlinear 

Schrödinger equation known as the Ablowitz-

Ladik equation, which exhibits rogue wave 

behavior. We establish the existence of a pecking 

order among rational solutions, and then use the 

Hirota method to deduce the first two solutions in 

that order. The stability of discrete similaritons 

and first-order rogue waves propagating across 

nonlinear waveguide arrays may be simulated by 

means of the inhomogeneous ALH equation. The 

similarity transformation is used to find these 

nonlinear solutions. Complexity and stability in 

discrete or continuous spatial configurations are 

the focus of CC, a CIM. When the amplitude 

modulation parameter is set to illustrative values, 

we discovered that the CC demonstrates 

saturation for a longer duration for rogue waves 

and a shorter time for free waves. We also provide 

rational solutions for the more general discrete 

Hirota equation, which includes the discrete 

Ablowitz-Ladik equation and the discrete 

modified Korteweg-de Vries mKdV equation as 

special instances. 

KEYWORDS: Ablowitz-Ladik equations; 

Hirota bilinear method; Discrete breathers; Rogue 

waves. 

INTRODUCTION 

Important physical phenomena, rogue waves are 

spatiotemporally limited and represent an isolated 

occurrence with no preceding or following 

examples. If a rogue wave (RW) reappears 

immediately after an encounter with no 

discernible change in size or form, we refer to it 

as a Rogan. The ocean, nonlinear optics, Bose-

Einstein condensates the atmosphere, and even 

the financial sector have all been shown to include 

RWs. The existence and usefulness of optical 

RWs in nonlinear optical fibers has also been 

shown by a few experimental studies. Optical 

RWs are distinct from the potentially disastrous 

oceanic RWs, which have been reported to affect 

passenger ships, container ships, oil tankers, 

fishing boats, and offshore and coastal buildings 

with often devastating results. In particular, the 

analytical RWs have been obtained for some 

physical models, including the shallow water 

Kadomtsev-Petviashvili equation and the 

nonlinear Schrödinger (NLS) equation, as well as 

some of their extensions with varying 

coefficients, higher orders, or higher dimensions. 

Several areas of physics, such as fluid mechanics 

and optics, may benefit from understanding the 

history and dynamics of wave packets as 

regulated by hierarchies of nonlinear Schrödinger 

equations. In addition to their inherent importance 

in theoretical physics, discrete versions of these 

nonlinear equations have been investigated 

extensively because they describe genuine 

practical scenarios, such as spatially confined 

modes in a periodic array of optical waveguides. 

The Ablowitz-Ladik system for oscillators on an 

integer lattice (t = time, n = integer, * = complex 

conjugate) is an example of an evolution equation 

that permits analytical progress. 

 

A brief word on Ablowitz-Ladik systems' physics-

related uses is in order. One difficulty is the 

conflict between nonlinearity and randomness; 

for example, a soliton's stability feature may be 

destroyed or severely degraded by a random 
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potential. The dynamics of discrete solitons as 

they travel over a Möbius strip of two connected 

arrays is another example of this kind of use. 

Potential topological switches and monopole 

spectra in parameter space are well-represented 

by the Ablowitz-Ladik system. The switching 

time at which soliton modes transition from one 

array to the next may be precisely controlled by a 

linear interchain coupling. 

The purpose of this paper is to theoretically 

suggest a new kind of linked Ablowitz-Ladik 

system with both SPM and XPM. In this case, we 

develop the Hirota bilinear form. Under some 

circumstances, we find exact periodic (breather) 

and localized (rogue wave) solutions. The 

presence of conservation rules is tested using a 

single spatially periodic solution. 

From physics and chemistry to the biological 

sciences and engineering, nonlinear phenomena 

may be found in every branch of study. Nonlinear 

evolution equations are a kind of partial 

differential equation used to represent nonlinear 

systems in many practical contexts (NLEEs). 

Solutions in the form of spatially confined 

excitations are of great interest. Several of these 

excitations are weakly radiated or nonradiative 

configurations that preserve their original form 

across very long distances. This unique quality is 

what gives rise to the name "solitons" or "solitary 

waves" to describe these arrangements. Several 

scientific disciplines, from hydrodynamics and 

plasma physics to condensed matter physics and 

optical communications to nuclear physics and 

astrophysics, have found solitons and solitons-

like solutions. 

LITREATURE REVIEW 

Jun Yang (2022) In this study, we look at how the 

generalized Darboux transformation affects the 

solutions of a generalized integrable discrete 

nonlinear Schr odinger (NLS) problem, namely 

the smooth positon and breather-positon solutions 

(DT). Degenerate DT is used to generate Nth-

order smooth positon solutions from the initial 

zero-seed solution. From this nonzero seed 

solution come the many breather solutions, such 

as the Akhmediev breather, the Kuznetsov-Ma 

breather, and the spacetime periodic breather. The 

eigenfunctions of breather solutions are then 

gradually expanded using a Taylor series, and this 

yields the breather-positon solutions. We analyze 

the impact of higher-order nonlinear terms on 

these discrete smooth positon solutions and 

breatherpositon solutions, showing that the 

interacting region of soliton-positon and 

breatherpositon is highly compressed by higher-

order nonlinear effects, but the distance between 

the two positons has an opposite effect in two 

waveforms. 

Yu, Fajun. (2015). Using the extended Darboux 

transformation, we investigate multi-rogue wave 

solutions to a Schrodinger equation with higher-

order components. Using the combined Hirota-

Lakshmanan-Porsezian-Daniel (LPD) equation, 

we conduct an analytical study of several features 

of the nonautonomous rogue waves. We think 

about the ways in which the nonlinearity 

management function and the gain/loss 

coefficient may be used to regulate this 

nonautonomous rogue wave solution. It has been 

suggested that by adjusting the nonlinear function 

and the gain/loss coefficient, it may be possible to 

"capture" rogue waves. Several possible uses for 

the rogue wave phenomenon are shown, as well 

as manipulated, by our method. 

Li Li Fajun Yu (2021) The 2+1-dimensional 

Ablowitz-Ladik (AL) equation's non-autonomous 

discrete bright-dark soliton solutions (NDBDSSs) 

are obtained. Here, we examine the resulting 2+1-

dimensional NDBDSSs in detail, focusing on 

their dynamic behaviors and interactions. Herein, 

we propose two distinct strategies for managing 

2+1-dimensional NDBDSSs. In the first 

approach, the time function has no effect on the 

phase of the wave, thus we can only influence its 

propagation in space. Using the second way, we 

have command of the wave's trajectory in space 

and time. Both types of management have the 

potential to generate the various propagation 

phenomena. New non-autonomous discrete bright 

soliton solution (NDBSS) and dark soliton 

solution (NDDSS) shapes, as well as their 
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interaction behaviors, are obtained. Analytical 

consideration is given to the unique phenomena 

and their potential applications in the electrical 

and optical domains. 

Pooja Thakur (2020) Using a discrete nonlinear 

Schrödinger equation, we calculate the 

configurational complexity (CC) of soliton and 

rogue waves propagating over an Ablowitz-

Ladik-Hirota (ALH) waveguide. We demonstrate 

that CC approaches a changing sequence of global 

minima over a certain range of the soliton 

transverse direction propagating along the 

parametric time. Maximum information 

compression in the momentum modes through the 

Ablowitz-Ladik-Hirota waveguide may be seen at 

these minimums. We compute the CC for rogue 

waves as a function of the background amplitude 

modulation and demonstrate that it possesses two 

crucial characteristics: a maximum at the optimal 

value for the rogue wave inception (the "gradient 

catastrophe") and saturation at the point where the 

rogue wave disperses into its constituent wave 

modes. We demonstrate that when the discrete 

rogue wave advances in time, greater levels of 

modulation amplitude led to saturation at earlier 

times. 

Xiaoyu, wu & Tian (2018) In this study, we 

explore the Ablowitz-Ladik equation in discrete 

dimensions (2+1), which is used to explain 

nonlinear waves in nonlinear optics and Bose-

Einstein condensation. Using the Kadomtsev-

Petviashvili hierarchy reduction, we are able to 

determine the Gramian-based solutions for the 

rogue waves. We visually examine the effects of 

the focusing coefficient and the coupling strength 

on the first-, second-, and third-order rogue 

waves. The rogue wave's crest and the backdrop 

fade away as the focusing coefficient's value rises. 

The rogue wave's rise and decay take less time as 

the coupling strength value rises. The tallest peak 

of a high-order rogue wave is presented alone, 

while the smaller humps are shown as triangular 

and circular patterns. 

 

 

Coupled Ablowitz-Ladik Systems 

Nonlinearities caused by SPM and XPM will be 

examined in a discrete system. We can 

accommodate SPM and XPM with a wide range 

of stokes: 

 

We first implement a change of variable: 

 

to derive 

 

The plane wave or continuous wave is given by 

 

Now that the Hirota bilinear transform has been 

shown to work well for the situation of a single 

component, it will be used more generally: 

 

Background plane wave's wavenumber and 

angular frequency will still be about Eq. but in a 

more comprehensible form. 

 

along with this new restriction 

 

Hence, we may write down the bilinear form as 
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SOME PROPERTIES OF NONLINEAR 

SCHR¨ODINGER EQUATIONS 

 

It was developed as a continuum approximation 

to a discrete equation with nonlinear coupling, 

where the subscripts now indicate partial 

derivatives. In paper II, we will utilize this 

equation as a case study to derive characteristics 

of the continuum nonlinear Schr odinger 

equations. Eq. (3.1) is a good candidate for a 

Lagrangian formulation, so we begin by noting 

that it can be derived from first principles. What 

we mean is that a Lagrangian exists. 

 

A Lagrangian density L, which is a functional of 

the variables, and, where the equation is a fixed 

point of the action integral. 

 

Thus, the variation's Euler-Lagrange equations 

should yield Eq (3.1). Due to the complex nature 

of the field variables, the equation forms a system 

of two connected real equations, one each in the 

real and imaginary sections of the complex 

variables. Then, S is independently varied with 

regard to u and v, two real variables, leading to 

two coupled equations. 

 

We may alternatively calculate independent 

variations of S with respect to and I using these 

equations. In mathematics, the Euler-Lagrange 

equations 

 

 

We have recently found a Lagrangian density that 

produces results. The fact that Eq. is essentially 

the complex conjugate of Eq. demonstrates that 

the Lagrangian density must be symmetric with 

respect to an exchange of the variables and I if L 

is real (3.5b). Hence, it is possible to demonstrate 

that the Lagrangian density is 

 

SYMMETRIES AND CONSERVED 

QUANTITIES 

One particularly nice feature of the Lagrangian 

formulation is that it allows us to establish 

connections between certain aspects of symmetry 

and variables that are preserved in the dynamics 

described by the equation. The conserved values 

are helpful for regulating the correctness and 

validity of numerical simulations, and they also 

provide crucial information on the behavior and 

features of the system. E. Noether was the first to 

formally express the connection between 

symmetries and conserved values for Lagrangian 

systems in a theorem. We propose the tiny 

parameter to restrict the scope of the theorem to 

continuous symmetries that have an expression in 

terms of infinitesimal generators. Let's pretend 

now that the shape has been transformed 
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with T, X, and Y functions of t, x,, t, and x, without 

changing the action integral S. Hence, if we 

assume that 

 

As mentioned before, if the current density J tends 

to a constant value at infinity or if periodic 

boundary conditions are used, then I = I dx is a 

conserved quantity, or constant of motion, as 

determined by the integration of Eq. over x. The 

theorem is proven by deriving the continuity 

equation explicitly from the transformation, and 

its application to nonlinear Schr odinger 

equations is discussed. Any continuous symmetry 

that can be expressed in the form given by Eq. will 

result in a conserved quantity, which is the major 

consequence of the theorem. Other symmetries, 

such as symmetry under inversion of time or a 

spatial coordinate, are not discussed. Also, any 

conserved quantity may not have a corresponding 

symmetry (the inverse of the theorem). Integrable 

equations are the most clear-cut examples; these 

include the cubic NLS equation and others with 

an infinite number of conserved variables but 

seemingly just a few continuous symmetries, such 

translation in time or space. These later 

symmetries are the most basic sort of symmetry 

on Eq. (3.7), and they hold true whenever the 

Lagrangian does not rely directly on the variables 

in question. 

Starting with the invariance under temporal 

translation, we now construct several conserved 

values for the continuum equation. T = 1 and X = 

Y = 0 indicate an infinitesimal transformation, 

which is what we use in Eq. The density of the 

Hamiltonian may be defined by plugging in a new 

term in Eq. 

It seems intuitive to associate H, the Hamiltonian 

we get by considering temporal translations, with 

the system's overall "energy," but keep in mind 

that there is no assurance that H is tied to any 

physical energy in a real-world application. The 

Hamiltonian flux density is the current density 

connected to H, and it is found in Eq. (3.10). 

 

This will characterize the movement of "energy" 

across the system. The Hamilton equations of 

motion may be written as a combination to 

provide and its complex conjugate. 

 

Eq. (3.7) is likewise translationally invariant, with 

X = 1 and T = Y = 0, and the equivalent conserved 

quantity, P = P dx, is intuitively called 

momentum. 

TWO-DIMENSIONAL ARRAY OF SQUARE 

WAVEGUIDES 

Analytical treatment is not as straightforward for 

the two-dimensional array shown in Fig. A.1b. An 

analytical solution for a rectangular dielectric 

waveguide has not yet been found. The sections 

that share a boundary with the interior region are 

the only ones in the exterior region where the 

approximate solution for modes that are not close 

to cut-off is valid; no expressions are given for the 

fields in the sections in the diagonal directions 

where the fields are assumed to be weak. 

Although this solution only accounts for the 

interaction between adjacent waveguides, it is still 

possible to draw the conclusion that the relative 

sizes of the nonlinear coupling parameters to the 

on-site nonlinearity are about the same as for the 

array of slab waveguides. Furthermore, 

connection between adjacent elements in the two-

dimensional array is possible along the diagonal. 

This approximate solution cannot be utilized to 

assess the strength of this linear connection. Even 

though this solution does not meet all the needed 

boundary conditions and leaves out certain field 

components, we can still construct an order of 

magnitude estimate by choosing expressions for 

the fields that reflect the key behavior in the 

distinct areas. Given that the electric field's 

dominant transverse field component is assumed 
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to be, the fields must oscillate in the inside and 

diminish exponentially in the outside. 

 

The wave counts for the lowest mode are same in 

both directions since the waveguides are square. 

For our purposes, the formulas presented in Eq. 

(A.9) are sufficient, but they may be simply 

applied to other areas. In a square waveguide, the 

mode is degenerate, but in an ideal case, the two 

orthogonal polarization orientations will not 

interact with one another. In an isotropic medium, 

there is no need to discriminate between the 

modes since they all have the same propagation 

constant. 

CONCLUSION 

The discrete A-L equation has been solved to the 

second rational order. An array of closely 

connected optical waveguides 14 may be 

approximated by this solution for errant light 

waves. Depending on the system's settings, the 

light may be focused into intense peaks. An 

analogy between rogue waves in the continuous 

NLSE 30 and higher-order rational solutions in 

the discrete A-L equation is our key finding here. 

Different coefficients and scaling factors were 

identified in the formulas for the rational solutions 

in the discrete case compared to the NLSE. The 

center maximum of a discrete rogue wave is often 

substantially taller than in the analogous NLSE 

scenario, which is the most striking characteristic 

of a rogue wave. Furthermore, we have provided 

rational solutions for the more general discrete 

Hirota equation, which includes the discrete A-L 

equation and the discrete mKdV equation as 

special instances. 
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