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Abstract— Tumor segmentation in Computed Tomography 

(CT) images is a crucial step in image-guided surgery. 

However, low-contrast CT images impede the performance of 

subsequent segmentation tasks. Contrast enhancement is then 

used as a preprocessing step to highlight the relevant 

structures, thus facilitating not only medical diagnosis but also 

image segmentation with higher accuracy. The proposed 

method is based on two concepts, namely adaptive gamma 

correction using DWT-SVD and OPTimized Guided Contrast 

Enhancement (OPTGCE). In the proposed DWT-SVD 

scheme, the technique decomposes the input medical image 

into four frequency sub-bands by using DWT and then 

estimates the singular value matrix of the LL sub-band image. 

An enhanced LL component is generated using an adequate 

correction factor and inverse SVD. The proposed OPTimized 

Guided Contrast Enhancement (OPTGCE) scheme exploits 

both contextual information from the guidance image and 

structural information from the input image. Tumor 

segmentation algorithm is applied on the enhanced images to 

analyze the performance of the proposed method in facilitating 

tumor segmentation. The qualitative and quantitative analysis 

using metrics including entropy, MCCEE, and MIGLCM 

shows the superiority of the proposed method in comparison 

with the existing methods that do not include guidance 

mechanism 

       Keywords—: 2D-DWT, Gamma Correction, SSIM, 

Gradient. 

I. INTRODUCTION 

         Liver cancer is the fifth most prevalent cancer in the 

world, carrying a low survival rate. Nevertheless, timely 

detection of cancerous tumors and effective treatment 

strategies can improve the overall survival rate. Diagnostic 

imaging techniques such as CT facilitate timely diagnosis of 

cancer; however, low contrast and noise limit their utility. 

Moreover, such low-contrast images make segmentation and 

tumor detection challenging problems that can be overcome 

by applying a contrast enhancement beforehand.  

      It is also worth mentioning here that a single medical 

imaging modality is unable to capture all the relevant 

structural information from the organs. For this reason, it is 

now becoming more common to acquire both CT and MR 

images periodically during liver cancer diagnosis and 

treatment. Therefore, it would be interesting to use the 

additional captured information from one imaging modality 

(e.g. MRI) to enhance the other (e.g. CT). The concept of 

enhancing the image from one modality using cross-modal 

image information is not novel; similar ideas have been 

successfully applied to natural images. One such approach for 

liver CT image enhancement using the corresponding MR 

images was proposed to improve the visibility of tumors and 

vessels. In general, the cross-modality guided enhancement 

methods have shown better performance in comparison with 

the classic single image enhancement methods.  

      Currently, there are two main challenges related to image 

enhancement in the medical context. Firstly, most recent 

enhancement techniques are tailored to only specific types of 

images. Secondly, it is not easy to find a well-established 

benchmark for evaluating the existing enhancement methods. 

For these reasons, the effectiveness of the enhancement 

approaches is often assessed based on their impact on the 

underlying application. For medical imaging, the motivation 

of CE, in general, is to improve the visual appearance of 

relevant organ structures for better diagnosis and intervention. 

However, limited research has been done on image quality 

enhancement to improve the segmentation of such organ 

structures. By using CE as preprocessing step, improved 

segmentation of relevant structures in CT images could be 

achieved as concluded. Therefore, there is a dire need for 

efficient CE algorithms for such images.  

      Traditional enhancement methods suffer from limitations 

such as saturation, over-enhancement, and uneven contrast 

spatial distribution, that may result from the uncontrolled CE 

process. One way to overcome such limitations is to combine 

the contrast enhancement approach with a quality control 

scheme. Inspired by the guided filtering approach and the 
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simplicity of context-aware histogram-based image quality 

enhancement, propose in this project a two stage contrast 

enhancement technique to improve the contrast of liver CT 

images using MRI images as guiding input data.  

The main contributions of this paper are: 

 To design a goal-oriented contrast enhancement 

method to improve tumor segmentation 

 Proposed approach is principally based on adaptive 

gamma correction using DWT with SVD 

 The two-dimensional histogram specification-based 

CE process is formulated as an optimization problem 

and extended to multi-modal medical imaging data 

for the first time 

 SSIM gradient is incorporated in the optimized cross-

modality guided 2D-HS framework to preserve 

structural fidelity of the enhanced image with the 

original image while applying enhancement 

 In order to obtain the objective of contrast 

enhancement without affecting the important 

structures of the image, the algorithm achieves a nice 

balance between retaining structural similarity with 

input image (by integrating SSIM gradient) and 

enhancing contrast by employing 2D entropy. The 

suggested combination of cross-modal guidance and 

quality control enhances the CT image exploiting 

contextual information, as opposed to context-

unaware schemes. 

 A new goal-oriented performance evaluation of the 

proposed approach is done utilizing objective quality 

metrics and through segmentation results applied on 

real multi-modal liver data. Comparison with single 

enhancement techniques validate the superior 

performance of the proposed method 

     The rest of the paper is organized as follows. Section II 

provides a brief review of relevant contrast enhancement 

methods. Section III describes the proposed Gamma 

correction and Optimized guided CE method. Experimental 

results of CE are discussed in section IV. The results of 

applying segmentation on the enhanced images are described 

in section V, followed by conclusion in section VI. 

  

II. RELATED WORKS 

     Due to the intrinsic endoscopic domain characteristics and 

the surgical exercise, stereo endoscopic images may suffer 

from different degradations which affect its quality. In this 

paper two joint enhancement methods [1] which operate in the 

wavelet transform domain. More precisely, by resorting to a 

joint wavelet decomposition, the wavelet subbands of the right 

and left views are simultaneously processed to exploit the 

binocular vision properties.  

     Survey examination in patients with a known extra-hepatic 

malignancy to exclude the presence of hepatic and extra-

hepatic involvement is normally undertaken with a contrast-

enhanced computed tomography examination. When patients 

with hepatic metastases are being considered for 

metastasesectomy, they undergo a staging examination [2] 

with contrast-enhanced magnetic resonance imaging (MRI) 

using tissue-specific contrast agents. Patients with chronic 

liver disease who are at risk for hepatocellular carcinoma 

undergo periodic liver screening for focal liver detection, 

usually with ultrasonography (US) with MRI being used when 

US is equivocal.  

     The presented method can extract the edges of an image 

accurately and enhance them while preserving smooth areas 

and weak textures; these improvements can be particularly 

helpful to doctors’ diagnoses. The primary contribution of this 

paper is the [3] Adaptive Fractional Differential Algorithm 

(AFDA), which uses the improved Otsu algorithm to segment 

the edges, textures and smooth areas of images. This algorithm 

allows the optimal fractional order of each pixel to be obtained 

using an adaptive fractional differential function constructed 

based on the area feature of image. As a result, the image can 

be enhanced adaptively. 

     The idea is to exploit the diversity of the information 

extracted from one modality to enhance the important 

structures including vessels and tumors in another modality. 

Our method employs information from liver Magnetic 

Resonance Image (MRI) to generate an enhanced CT image. It 

entails applying two dimensional histogram specification to 

map 2D histogram of CT to that of MRI [4] followed by 

application of top and bottom hat transformations. These 

morphological operations highlight areas brighter than their 

surroundings and suppress darker areas. The final image is 

obtained by combining the results of these operations. 

     To mitigate the content-blindness, a family of filters, called 

joint/guided filters, have attracted a great amount of attention 

from the community. The main drawback of most joint/guided 

filters comes from the ignorance of structural inconsistency 

between the reference and target signals like color, infrared, 

and depth images captured under different conditions [5]. The 

proposed muGIF is very flexible, which can work in various 

modes including dynamic only, static/dynamic and 
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dynamic/dynamic modes. Although the objective of muGIF is 

in nature non-convex, by subtly decomposing the objective, 

we can solve it effectively and efficiently.  

     We propose a two-image restoration framework [6] 

considering input images in different fields. The major issue in 

such a framework is to handle structure divergence and find 

commonly usable edges and smooth transition for visually 

compelling image reconstruction. We introduce a scale map as 

a competent representation to explicitly model derivative-level 

confidence and propose new functions and a numerical solver 

to effectively infer it following new structural observations. 

     The novelties of the proposed algorithm consist of tuning 

the standard single-scale Retinex, [7] adding a normalized-

ameliorated Sigmoid function and adapting some parameters 

to improve its enhancement ability. The proposed algorithm is 

tested with synthetically and naturally degraded low-contrast 

CT images, and its performance is also verified with 

contemporary enhancement techniques using two prevalent 

quality evaluation metrics-SSIM and UIQI. 

     An ameliorated version of the contrast-limited adaptive 

histogram equalization (CLAHE) is introduced in this article 

to provide a good brightness with decent contrast for CT 

images [8]. The novel modification to the aforesaid technique 

is done by adding an initial phase of a normalized gamma 

correction function that helps in adjusting the gamma of the 

processed image to avoid the common errors of the basic 

CLAHE of the excess brightness and imperfect contrast it 

produces.  

     We propose persistence and grid-stride loop based fast 

parallel contrast enhancement for CT liver images. We use 

enhanced CT liver image for the lesion or tumor segmentation. 

We implement the fast parallel gradient based dynamic seeded 

region growing for lesion segmentation [9]. 

     We observe that abundant blood vessels are available on 

tissue surfaces and can be extracted as a new set of image 

features. In this paper, two types of blood vessel features are 

proposed for endoscopic images: branching points and 

branching segments [10]. Two novel methods, ridgeness-

based circle test and ridgeness-based branching segment 

detection are presented to extract branching points and 

branching segments, respectively.  

 

 

III PROPOSED SYSTEM 

     Two-stage low contrast liver enhancement based on 

adaptive gamma correction and OPTGCE are proposed. In a 

first step, the technique decomposes the input image into four 

frequency sub-bands by using DWT. Then, estimates the 

singular value matrix of the LL sub-band image. In a second 

step, an enhanced LL component is generated using an 

adaptive gamma correction and inverse SVD. Finally, inverse 

DWT together with the unprocessed sub-bands for first stage 

enhanced image generation. The main advantage of such a 

dynamic method is that it could be applied to large types of 

images for contrast enhancement with simultaneously 

preserving the edge information of the original image. In fact, 

the SVD technique is applied in a first step for contrast 

enhancement of LL sub-band image obtained using DWT. In a 

second step, for a further contrast improvement, the obtained 

LL sub-band image is processed using a modified transfer 

function based on adaptive gamma correction transformation. 

Parameters of gamma transformation are dynamically and 

automatically calculated depending on the statistical 

information of the processed LL sub-band image. In the next 

step, propose a similar approach for medical images using 

cross-modal information. The new CE approach is hence 

based on two concepts, namely, crossmodality-guided medical 

image enhancement to improve the global contrast, and quality 

control to preserve the local structures during enhancement. 

Here, we formulate the cross-modal CE as an optimization 

problem, where the gradient of structural similarity index 

measure (SSIM) is used for local structure preservation and 

minimizing artifacts introduced during enhancement. 
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Fig. 1. Block diagram of the proposed method 

     Generally, classical Contrast Enhancement (CE) methods 

do not optimize an objective function or contrast-related 

measure; instead, they manipulate the pixel values according 

to a predefined distribution. Besides, these approaches amplify 

the contrast without objectively controlling the possible 

artifacts that may arise from the CE process. To the best of our 

knowledge, there are very few works where the contrast 

enhancement effect is controlled according to a well-defined 

framework. In this project, a novel two-stage method for low-

contrast image enhancement is proposed. It including a 

adaptive gamma correction using DWT and a OPTGCE is 

proposed. DWT algorithm is considered to decompose the 

dark original image into different sub-band images. In order to 

obtain an improved image characterized by higher contrast 

with edges preservation, only LL sub-band images are 

processed using SVD method and adaptive intensity 

transformation using gamma adjustment function. Parameters 

of gamma correction are computed dynamically and 

automatically for each image according to its statistical 

information.  

     The proposed method OPTGCE operates according to this 

strategy. It applies HS-based CE to the low-contrast CT image 

based on the second-order distribution of an image of a 

complementary modality, that is MRI. The motivations behind 

the use of histogram-based methods are essentially their 

simplicity, reduced computational load, and the fact of 

exploiting a global statistical quantity that contains essential 

information on the distribution of pixel values. This is 

especially advantageous in the case of a large size of medical 

imaging data. Therefore, the 2D histogram effectively exploits 

the inter-pixel interactions, i.e. second-order statistics, in the 

design of the CE scheme. This treatment enhances the overall 

contrast well but may suffer from some side effects. Indeed, 

the locally relevant structures of the image can be negatively 

affected, leading the processed image to be divergent from the 

original. Therefore, it is necessary to control the critical 

parameters of the CE process to amplify local contrast while 

simultaneously preserving the intrinsic structures of the image. 

One strategy to prevent the CE from side effects is to control 

the enhancement by using a local similarity measure between 

the input and enhanced image or some stopping criteria. Here, 

we perform the optimization using a measure that is directly 

related to the structural information in the image and carries 

contrast information. Furthermore, the extent of contrast is 

quantified through the two-dimensional entropy. The 

flowchart of the proposed technique is shown in Fig.1. 

 

Fig.2 Input Processing (a) Input Image (b) Guidance Image (c) 

2D-HS Output 
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3.1 ADAPTIVE GAMMA CORRECTION 

A) DISCRETE WAVELET TRANSFORM 

     The discrete wavelet transform (DWT) is a powerful 

implementation of the WT using the dyadic scales and 

positions. The fundamentals of DWT are introduced as 

follows. Suppose x(t) is a square-integral function, then the 

continuous WT of x(t) relative to a given wavelet ψ(t) is 

defined as 

 

Where  

 

     Here, the wavelet ψa,b(t) is calculated from the mother 

wavelet ψ(t) by translation and dilation: a is the dilation factor 

and b the translation parameter (both real positive numbers). 

There are several different kinds of wavelets which have 

gained popularity throughout the development of wavelet 

analysis. The most important wavelet is the Haar wavelet, 

which is the simplest one and often the preferred wavelet in a 

lot of applications. 

      Equation can be discretized by restraining a and b to a 

discrete lattice (a = 2b & a > 0) to give the DWT, which can be 

expressed as follows. 

 

 

     Here caj,k and cdj,k refer to the coefficients of the 

approximation components and the detail components, 

respectively. g(n) and h(n) denote for the low-pass filter and 

high-pass filter, respectively. j and k represent the wavelet 

scale and translation factors, respectively. DS operator means 

the downsampling. Itis the fundamental of wavelet 

decomposes. It decomposes signal x(n) into two signals, the 

approximation coefficients ca(n) and the detail components 

cd(n). This procedure is called one-level decompose. 

B) SINGULAR VALUE DECOMPOSITION 

     The singular value matrix is calculated by applying SVD 

on original image matrix. In fact, a given real matrix I may be 

decomposed into a product of three matrix, commonly 

calculated according to equation, 

 

     where, ΣI is the singular value matrix which is a diagonal 

matrix, UI and VI are used as orthogonal matrices and T is 

transpose operator. The singular value matrix ΣI includes 

intensity information of the image, that’s why SVD technique 

is considered for image equalization. The ratio of highest 

singular value of generated normalized matrix, with mean zero 

and variance of one, for a particular input image may be 

calculated according to equation, 

 

     where, Σ N(μ=0, var=1) is the singular value matrix of the 

synthetic intensity matrix. These coefficients could be 

considered for equalized image ‘Iequalized’ reconstruction 

according to equation, 

 

3.2 INTENSITY TRANSFORMATION AND GAMMA 

CORRECTION 

     The gamma correction transformation is given by the 

following equation 

 

     where Iin and Iout represent respectively the input and output 

image intensities. Both c and γ parameters are used to adjust 

the shape of the transformation function. In fact, a set of 

parameters (γ, c) could produce high performances for some 

considered images but not for some others. In order to 

overcome this problem, Rahman et al. proposed a new method 

where γ and c parameters are determined dynamically and 

automatically for each input image according to its statistical 

characteristics. Indeed, authors proposed to classify an original 

image I into either low-contrast class C1 or moderate contrast 

class C2 according to the contrast of considered image using 

equation 
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     where 𝐷 =  𝑑𝑖𝑓𝑓((𝜇 +  2𝜎), (𝜇 −  2𝜎))  and τ is a 

constant considered to define the contrast of an input image. 

Experiments showed that τ = 3 is an optimal choice to 

characterize the contrasts of different images. The standard 

deviation and the mean of the considered image intensity are 

respectively denoted by σ and μ. According to equation, we 

classify an image as a low-contrast (class C1) if 4𝜎 ≤  1/𝜏, 

meaning that the major pixel intensities of considered image 

are grouped within a small range. Otherwise, the image is 

classified as moderate contrast (class C2). 

A) DARK IMAGES WITH LOW CONTRAST (In C1) 

     The majority intensities of a dark input image from the first 

class are grouped in a small range of dark gray levels around 

the mean intensity of the considered image. In order to 

improve the contrast of like input image, the transformation 

curve requires to flaunt the dark intensities to the higher 

intensities. Therefore, the main constraint in this case is to 

generate a transformation function that lies above the line Iout 

= Iin. As a response to this constraint, Rahman et al. show that 

the value of γ could be calculated using equation 

 

     The parameter 𝑐 is also calculated dynamically for different 

images according to the nature of the respective image using 

equation 

 

where k is defined by equation 

 

and the Heaviside function is given by equation 

 

B) DARK IMAGES WITH MODERATE CONTRAST (In 

C2) 

     The intensities of a dark input image from the second class 

are scattered over the available dynamic range. In this case, 

Iout and c are calculated similarly using equations. However, 

the correction factor γ is expressed differently using equation, 

not to make much stretching of the contrast 

 

C) PROPOSED MEDICAL IMAGE ENHANCEMENT 

ALGORITHM 

     The general method of the proposed algorithm for medical 

image enhancement is concerted in different parts described as 

follows. The dark input medical image ‘𝐼𝑖’ is firstly processed 

by GHE algorithm in order to compute ‘𝐼�̂� ’. Both images are 

decomposed by DWT into LL, LH, HL, and HH for ‘𝐼𝑖’, and 

𝐿�̂�, 𝐿�̂�, 𝐻�̂� and for ‘𝐼�̂�’. Indeed,  enlightenment information is 

surrounded in LL sub-band but the edges are concerted in 

other sub-bands (i.e., LH, HL, and HH). 

     Hence, separating the high-frequency sub-bands and 

applying a contrast enhancement on only LL sub-band will 

protect the edge information from possible degradation. In a 

first enhancement step, SVD method is applied over both low 

frequency components LL and 𝐿�̂� to generate respectively UL, 

ΣL, VL, and 𝑈�̂�, Σ�̂� , 𝑉�̂� . The maximum element in UL and VL, 

from LL and the maximum element in 𝑈�̂�  and 𝑉�̂�  from are 

respectively calculated to determine the correction factor ξ. 

The correction factor ξ, the enhanced singular value matrix 

and the enhanced LL sub-band SVD are respectively 

calculated using equation 

 

 

 

     After that, the enhanced LL sub-band using SVD approach, 

𝐿𝐿̅̅ ̅
𝑆𝑉𝐷  is classified according to equation into either low-

contrast class C1 or moderate contrast class C2 depending on 
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the available contrast of this subband image (μ and σ represent 

respectively the mean and the standard deviation of the 

enhanced 𝐿𝐿̅̅ ̅
𝑆𝑉𝐷 sub-band image in this case). An adaptive 

gamma factor correction is calculated dynamically according 

to the obtained class: equation is considered for LL sub-band 

images with low contrast (class C1) and equation for LL sub-

band images with moderate contrast (class C2). In a 

second enhancement step, an adaptive intensity transformation 

using gamma correction is applied on 𝐿𝐿̅̅ ̅
𝑆𝑉𝐷 sub-band 

according to equation to generate the final enhanced 𝐿𝐿̅̅ ̅
𝛾  sub-

band image. 

 

where c is computed using equation 

 

     The generated enhanced LL sub-band using gamma 

correction, 𝐿𝐿̅̅ ̅
𝛾 is recombined with others sub-band images of 

the original image (LH, HL and HH) using IDWT to generate 

the resultant equalized medical image ‘𝐼�̅�  ’. 

 

3.3 OPTIMIZED GUIDED CONTRAST 

ENHANCEMENT (OPTGCE) 

     The three essential components of the proposed method, 

namely the 2D histogram specification-based CE, the 

structural gradient-based similarity measure, and 2D entropy 

are described below. 

A) 2D HISTOGRAM SPECIFICATION          

     2D Histogram Specification methods can improve the 

contrast in an image by increasing the pixel-value differences 

among the neighbouring pixels. This has the disadvantage of 

not taking into account the strong spatial correlation of pixels 

and exploiting it in order to avoid side effects associated with 

histogram approaches. These limitations have led to the use of 

higher-order statistics of pixel values and characteristics to 

develop more efficient methods. 

Let f(m,n) denotes the input image signal at pixel 

(m,n), the associated 2D histogram is defined as below: 

𝐶𝑓(𝑖, 𝑗) = ∑  ∑ 𝛿𝑖𝑗(𝑓(𝑚, 𝑛), 𝑓(𝑝, 𝑞)),𝐾−1
𝑗=0

𝐾−1
𝑖=0            (1) 

Here, i and j represent the pixel values and (m, n) and (p, q) 

represent the image coordinates, K is the total number of grey 

levels, and 0 ≤ i, j ≤ K − 1, 

𝛿𝑖,𝑗(𝑎, 𝑏) = {
1, 𝑖𝑓  𝑖 = 𝑎 𝑎𝑛𝑑 𝑗 = 𝑏  
0                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The transition probability of grey-levels, i.e. the 2D 

normalized histogram, is derived from the GLCM as follows: 

ℎ𝑓(𝑖, 𝑗 ) =                 (2) 

The 2D-histogram is then used in the
𝐶𝑓(𝑖,𝑗)

∑ ∑  𝐶𝑓(𝑖,𝑗)𝐾−1
𝑗=0

𝐾−1
𝑖=0  

 pixel 

grey-level mapping process using the histogram specification 

method as described below. This mapping process is based on 

the two-dimensional Cumulative Distribution Function (CDF) 

of the input and guidance images computed as follows. 

𝐻𝑓(𝑖, 𝑗 ) = ∑ ∑ ℎ𝑓(𝑖, 𝑗 )

𝐾−1

𝑗=0

     (3)

𝐾−1

𝑖=0

 

The expression of the 2D-CDF of the guidance image is 

computed similarly and is represented as Hg. Once the 2D-

CDF of both images is computed, the transformation T 

allowing the mapping between the input signal and the desired 

signal is obtained as follows: 

𝑇(𝑖, 𝑗) = 𝑎𝑟𝑔[𝑘,𝑙]
𝑚𝑖𝑛| 𝐻𝑓(𝑖, 𝑗 )– 𝐻𝑔(𝑘, 𝑙 )| + 𝜂(|𝑖 − 𝑘| + |𝑗 − 𝑙|)  

      (4) 

The algorithm searches for T(c,d)= [ 𝑇(𝑐, 𝑑)1 ,T(c,d)2], the 

target pixel value, where T(c,d)1,T(c,d)2 indicate pixel values 

corresponding to c and d. The second term in the above 

expression selects a closer pixel pair if difference of first term 

among candidate pixel pairs are very small. At this point, a 

target pixel value pair is calculated for each input pixel value 

pair. Now, each pixel is paired with every pixel in its 

neighborhood, therefore, a relaxed solution is presented to 

obtain the output pixel value f(m,n). Each adjacent pixel in the 

neighborhood casts a vote for target pixel value of f(m,n). The 

value that gives the minimum sum of absolute difference of 

votes is taken as target pixel value. Practically, it is the median 

of pixel values voted by adjacent pixels. Using 2D CDF 

manipulation, target pixel value pair is calculated for each 

input pixel value pair. 

𝑓𝑒(𝑚, 𝑛) = 𝑇(𝑓(𝑚, 𝑛), 𝑓(𝑚, 𝑛 + 1))          (5) 

From Eq. 5, it can be inferred that transformation of each 

value in the original image [𝑓 ] to a new value in the enhanced 

image [𝑓𝑒] also depends on its neighboring element. Therefore, 

unlike the 1D histogram specification which only considers 

http://www.ijsrem.com/
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individual pixel values for calculating the CDFs and 

ultimately mapping these values, this approach also exploits 

the contextual information among the pixels. Next, we look at 

the SSIM gradient approach. 

B) GRADIENT BASED STRUCTURAL SIMILARITY 

MEASURE 

        The idea is to apply global HS to a low-contrast image 

driven by an SSIM-based measure to control the enhancement 

through structural similarity changes between the original 

image and its enhanced variant. SSIM is a well-established 

measure to calculate the extent of similarity between two 

images [13]. Considering one image as a reference, the index 

provides the quality of the image under analysis in comparison 

with a reference. SSIM index is calculated between 

corresponding local blocks in images [A] and [B], after which 

the average of the values is taken to obtain a single value of 

SSIM as the overall similarity index. Let us assume that ax 

and bx represent corresponding blocks 𝑥 in both images; µax 

and µbx represent the mean intensity values of ax and bx and 

the standard deviations are given by 𝜎𝑎𝑥
 and 𝜎𝑏𝑥

. C1 and C2 

are small numbers greater than 0 to ensure the denominator is 

not zero. The SSIM between the two blocks ax and bx is then 

expressed as: 

𝑆𝑆𝐼𝑀(𝑎𝑥 , 𝑏𝑥) =
(2𝜇𝑎𝑥

𝜇𝑏𝑥
+ 𝐶1)(2𝜎𝑎𝑥𝑏𝑥

+ 𝐶2)

(𝜇𝑎𝑥
2 + 𝜇𝑏𝑥

2 + 𝐶1)(𝜎𝑎𝑥
2 + 𝜎𝑏𝑥

2 + 𝐶2)
 

(6) 

Few terms in Eq. 6 are described mathematically a 

𝜇𝑎𝑥
= 𝑤 ∗ 𝑎𝑥 

𝜎𝑎𝑥𝑏𝑥
= 𝑤 ∗ (𝑎𝑥𝑏𝑥) − 𝜇𝑎𝑥

 𝜇𝑏𝑥
 , 

𝜎𝑎𝑥
2 = 𝑤 ∗ 𝑎𝑥

2 − 𝜇𝑎𝑥
2  

      where w is 11 × 11 Gaussian kernel and ∗ indicates 

convolution. Eq. 6 could be regarded as expression for SSIM 

index map, SSIMmap calculated via element wise addition and 

multiplication using parameters expressed in Eq. 7. Then, at 

all points, SSIMmap indicates local similarity between images 

[A] and [B]. The global SSIM index for the overall images can 

then be expressed a 

𝑆𝑆𝐼𝑀(𝐴, 𝐵 =
1

𝑍
∑ 𝑆𝑆𝐼𝑀𝑚𝑎𝑝(𝑎𝑥 , 𝑏𝑥; 𝑥
∀𝑥

) 

where Z denotes the number of pixels in either image. 

. For the local SSIM measures in Eq. 6, we define the 

following terms for compactness.  

∝1 (𝑎𝑥 , 𝑏𝑥) = 2𝜇𝑎𝑥
𝜇𝑏𝑥

+ 𝐶1, 

∝2 (𝑎𝑥 , 𝑏𝑥) = 2𝜎𝑎𝑥𝑏𝑥
+ 𝐶2 

  𝛽1(𝑎𝑥 , 𝑏𝑥) = 𝜇𝑎𝑥
2 + 𝜇𝑏𝑥

2 + 𝐶1, 

  𝛽1(𝑎𝑥 , 𝑏𝑥) = 𝜎𝑎𝑥
2 + 𝜎𝑏𝑥

2 + 𝐶2 

. Here, 2D-HS is applied to enhance CT images by exploiting 

the better quality of MR images. When applied in the 

framework of optimization, the SSIM gradient refines the 

enhancement process incrementally. 

The integration of SSIM ultimately preserves the overall 

morphology of the original image with minimal information 

loss during enhancement. Here, we denote the input image as 

[f] and the image whose structural similarity is being 

compared with [f] as [fe]; [fe] is obtained after applying 2D-

HS. Now, to adapt the notion of SSIM gradient to our 

scenario, let us replace [A] by [fe] and [B] by [f] and rewrite 

Eq. 8 as: 

𝑆𝑆𝐼𝑀(𝑓𝑒 , 𝑓) =
1

𝑍
∑ 𝑆𝑆𝐼𝑀𝑚𝑎𝑝(𝑓𝑒𝑥

, 𝑓𝑥; 𝑥
∀𝑥

) 

Calculating the derivative of Eq. 10 with reference to [fe] 

gives the SSIM gradient expression as follows: 

𝜕𝑓𝑒 𝑆𝑆𝐼𝑀(𝑓𝑒 , 𝑓) 

         =
2

𝑍
 [(𝑤 ∗

𝛼1

𝛽1𝛽2
) 𝑓] 

                     + (𝑤 ∗
−𝑆𝑆𝐼𝑀𝑚𝑎𝑝 

𝛽2
) 𝑓𝑒                                                  

𝑋 [+𝑤 ∗
𝜇

𝑓𝑒(𝛼2−𝛼1)−  𝜇𝑓 (𝛽2−𝛽1
) 𝑆𝑆𝐼𝑀𝑚𝑎𝑝 

𝛽1𝛽2
] 

where α1, α2, β1 and β2 have been described in Eq. 9a and 9b. 

 

Fig.3 SSIM Result. (a) SSIM Image (b) SSIM Gradient Image 

http://www.ijsrem.com/
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C) CONTRAST ENHANCEMENT WITH QUALITY 

CONTROL 

       Initially, set the input CT image [f] equal to [f‘] and 

guidance MRI as [g]. The CDFs of [f] and [g] are calculated, 

the transformation T allowing the mapping between the input 

signal and the desired signal is obtained. The pixel values in 

[f’] are mapped to new values to get enhanced image. 2D 

entropy is used to control the level of enhancement. The 

stopping criterion is determined by the gain in 2D entropy 

achieved for the enhanced image 

 The estimated increase in SSIM at iteration t is 

mathematically described as 

△ 𝑆𝑆𝐼𝑀(𝑡) = 𝛼𝑍 ∑(𝜕𝑓𝑒
 𝑆𝑆𝐼𝑀(𝑓, 𝑓𝑒(𝑡)))2

∀𝑥

 

 Based on the behavior of SSIM(t) at several 

iterations, 1 SSIM(t) can be modeled by αrst [15]. The final 

value of SSIM (after several iterations) can be expressed as: 

𝑆𝑆𝐼𝑀𝑓 =  𝑆𝑆𝐼𝑀′ +
𝑟𝛼𝑍

1 − 𝑠
 

       Proposed experiments show that SSIM value changes 

faster in earlier iterations, therefore the algorithm is executed 

three times to calculate the quantities in Eq. 13. Replacing 

SSIMf value by 1 (the ideal value) and substituting the above 

values in Eq. 13, the approximated upper bound on α can be 

calculated as: 

𝑆𝑆𝐼𝑀𝑓 =  𝑆𝑆𝐼𝑀′ +
𝑟𝛼𝑍

1 − 𝑠
 

Proposed method to measure the contrast enhanced at each 

iteration by applying 2D-HS. Therefor2D entropy is used to 

control the level of enhancement. Here, we have used 2D 

entropy to formulate this criterion a 

𝐸𝑡 = − ∑  ∑ ℎ𝑓𝑒(𝑡)
(𝑖, 𝑗)ln(ℎ𝑓𝑒(𝑡)

(𝑖, 𝑗))

𝐾−1

𝑗=0

𝐾−1

𝑖=0

 

The change in entropy of the enhanced image gained with 

every iteration is calculated as follows 

△ 𝐸 = 𝐸𝑡 −  𝐸𝑡−1 

. At a specific point in the optimization process, when 1E 

becomes negligible (close to zero) or when the 1E value starts 

oscillating, the enhancement process is stopped 

 
Fig.4 Enhanced Output 

IV. PERFORMANCE EVALUATION 

     The data used in this research work is provided by the 

Intervention Center, Oslo University Hospital in Norway. 

Liver CT and MR data of the same patient are used; however, 

CT-MRI data is not registered since registration is not required 

for global enhancement methods. Here tested our method on 

10 patients’ data constituting 12 CT-MR image pairs 

(containing tumors). The images from different volumes are of 

different spatial sizes (such as 512 × 512, 360×240) with pixel 

values in the range [0, 255]. In medical image processing tasks 

such as segmentation and enhancement, the processing is often 

restricted to a particular organ and the nearby organs are 

removed from the medical images. The liver area in the 

images is therefore separated and processing is applied only to 

this region. 

     Image Quality Assessment (IQA) is a well-investigated 

research field especially in the case of natural images. 

However, the use of existing IQA metrics has serious 

limitations in the medical context . The objectives of CE in the 

medical context are quite different. While in the case of 

natural images the objective is to measure the effect of various 

distortions on the perceptual quality of the image; in the 

medical context even if some degradation may disturb the 

radiologists the focus is rather on the diagnosis. Therefore, the 

existing IQA metrics must be used with special care. Another 

challenging topic is how to evaluate the performance of a 

given image quality enhancement algorithm in terms of 

perceptual quality. In the proposed system, focus on some 

contrast enhancement evaluation (CEE) metrics. The 

motivation of the OPTGCE is to emphasize the appearance of 

specific structures in the image and convey the maximum 

structural information to facilitate tumor segmentation. To this 

end, we have chosen three different CEE metrics to evaluate 

the quality of enhanced images. The first metric is a mutual 

information-based no reference metric called MIGLCM. This 

http://www.ijsrem.com/
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metric offers quantitative criteria that examines the changes in 

the statistical features, joint entropy, and mutual information, 

acquired from the GLCM of the original and the enhanced 

images. Besides MIGLCM, we have used a recent metric 

Multi-Criteria Contrast Enhancement 

Table 1.1 Quantitative assessment of different enhancement 

methods. 

Ima

ge 

Entropy MIGLCM 

CM

GE 

OPT

GCE 

Propos

ed 

CMG

E 

OPT

GCE 

Propo

sed 

1 2.32 3.05 4.2 1 1.1 3.2 

2 1.7 1.9 2.1 0.93 1.05 4.7 

3 1.52 2.1 3.5 0.82 0.95 2.80 

4 1.11 1.88 2.70 0.64 0.82 2.75 

 

     For the last metric, have used entropy, which is often used 

in QA of medical image enhancement . Table 1.1 lists the 

median values of MIGLCM and entropy.  A higher value of 

MIGLCM reflects better performance of CE algorithms. 

Besides, higher entropy values also correspond to superior CE 

performance; however, there is no specified range for this 

metric. From the tabular results, we can observe that OPTGCE 

demonstrates the best performance. For MCCEE and entropy, 

Cross-Modality Guidance-based enhancement (CMGE) and 

Histogram Equalization with Maximum Intensity 

Coverage(HEMIC) are ranked low overall by the two QA 

metrics. 

V. TOWARDS AN OPTIMAL SEGMENTATION 

PRESERVING LOCAL STRUCTURES 

     The results of applying gradient-driven SRG algorithm on 

enhanced as well as input images are demonstrated in Fig. 5. 

In general, application of the CE methods improve the contrast 

of the input image, which ultimately enables SRG to locate 

tumor contours favorably. However, OPTGCE well preserves 

uniformity in the structure of tumors in the enhanced image 

together with yielding sharp tumor edges. Therefore, Seeded 

Region Growing (SRG) algorithm is better able to locate the 

tumor contours in the OPTGCE-enhanced images. This 

property enables OPTGCE to outperform other CE methods in 

facilitating tumor segmentation. 

 

Fig.5 Tumor segmentation applied on enhanced images. (a) 

ROI (b) Segmented Output 

V1. CONCLUSION 

     This project proposes an optimization-based guided 

contrast enhancement approach OPTGCE and adaptive 

gamma correction using DWT-SVD for low contrast CT 

images. The proposed technique adopts a context-aware 2D 

histogram-based scheme of exploiting information in the 

better perceptual quality guidance image for global contrast 

enhancement, while local image structures are enhanced 

through SSIM based measure in an optimization framework. 

This combination effectively improves the contrast while 

minimizing the artifacts associated with typical histogram-

based enhancement methods to preserve the morphological 

information of the image during enhancement. The qualitative 

and quantitative analysis using metrics including entropy, 

MCCEE, and MIGLCM shows the superiority of the proposed 

method in comparison with the existing methods that do not 

include guidance mechanism. Finally, a tumor segmentation 

algorithm is applied on the enhanced images to analyze the 

performance of the proposed method in facilitating tumor 

segmentation. 
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