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Abstract: "Uncanny Activity Detection Using CCTV 

Monitoring" introduces an innovative approach to 

support public safety through the integration of 

Machine Learning (ML) in real-time monitoring. In the 

contemporary world, Closed-Circuit Television (CCTV) 

surveillance stands as a fundamental and highly 

effective security measure for various premises, 

including hospitals, malls, and universities. It serves as a 

widely recognized tool for preventing and detecting 

unwanted activities. However, envisioning an public 

space equipped with several CCTV cameras across 

multiple buildings presents a logistical challenge. The 

manual monitoring of events across this expansive 

network is practically impossible. Furthermore, 

searching for a specific event in recorded video footage, 

even after it has occurred, proves to be a time-

consuming endeavor. This project addresses the need 

for an efficient solution to manage and analyze extensive 

CCTV footage in complex environments, optimizing 

security practices and response times. 

Keywords: Anomaly Detection, Deep Learning, Human 

Behavior Recognition. 

1. INTRODUCTION 

In an era where security concerns are most prevailing, 

detecting human behavior in real-world environments has 

numerous practical applications, such as intelligent video 

surveillance and shopping behavior analysis. The utilization 

of CCTV systems has become a cornerstone for 

safeguarding public and private spaces. They play a crucial 

role in ensuring safety and security in everyday life. 

Manual monitoring of CCTV footage for all events is 

impractical due to the sheer volume of data. Searching for 

specific events in recorded video consumes significant time 

and resources. Therefore, automating the analysis of video 

to detect abnormal or suspicious behavior is becoming 

increasingly important in the field of automated 

surveillance systems. Automated human behavior detection 

in video surveillance involves intelligently identifying 

suspicious activities in public places like airports, train 

stations, banks, offices, and examination halls. Various 

efficient algorithms have been developed for this purpose. 

Video surveillance is an evolving field that heavily 

incorporates Artificial Intelligence (AI), Machine Learning 

(ML), and Deep Learning technologies. AI enables 

computers to simulate human-like thinking, while ML 

focuses on learning from training data to make predictions 

on new data. The advent of powerful GPU processors and 

large datasets has facilitated the rise of Deep Learning. 

Deep Neural Networks (DNNs) are particularly effective 

for challenging learning tasks. They automatically extract 

features and create high-level representations of image data, 

making feature extraction fully automated. Convolutional 

Neural Networks (CNNs) are well-suited for learning visual 

patterns directly from image pixels. For video analysis, 

Long Short-Term Memory (LSTM) models excel at 

capturing long-term dependencies and remembering critical 

information. The proposed system named "Uncanny 

Activity Detection Using CCTV Monitoring" aims to 

leverage CCTV footage to monitor human behavior and 

provide alerts on human activities. Key components of 

intelligent video monitoring include event detection and 

human behavior recognition. The training process of a 

surveillance system typically involves three phases: data 

preparation, model training, and inference. This systematic 

approach ensures that the system can effectively analyze 

and respond to real-world events captured by CCTV 

cameras. 

2. LITERATURE SURVEY 

In [1] employs an Enhanced Convolutional Neural Network 

(ECNN)-based system for detecting suspicious activities in 

crowded environments. Leveraging machine learning (ML) 

and deep learning (DL) techniques, our approach aims to 

predict suspicious behavior by analyzing human gestures 

and unusual activities. The methodology involves training 

the ECNN model on diverse datasets to enhance accuracy, 

precision, and minimize false positives and false negatives. 

By incorporating advanced DL methods, such as CNNs, 

which achieve robust performance in identifying subtle 

indicators of suspicious behavior. Evaluation metrics will 
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be employed to compare the effectiveness of ECNN 

approach against traditional surveillance methods, 

demonstrating its potential for enhancing security measures 

in crowded settings. 

In [2] paper employs the challenge of robust object tracking 

in surveillance systems, focusing on occlusion-induced 

drift. It proposes a novel tracking scheme that integrates 

motion modeling via a particle-kalman-filter (PKF) into the 

kernelized correlation filter (KCF) framework. This 

approach effectively handles occlusion and maintains 

robust tracking performance in challenging scenarios, as 

validated by competitive experimental results. 

In [3] paper it identifying suspicious behavior in video 

surveillance using a deep learning-based approach tailored 

for academic settings. Leveraging AI, ML, and DL 

advancements, the system analyzes consecutive frames 

from surveillance footage to differentiate normal from 

suspicious activities. By automating the detection process, 

this technology enhances public safety by efficiently 

identifying potential threats in academic environments. 

In [4] The study introduces an automatic video detection 

system to identify suspicious activities in public spaces. 

Employing three deep learning models CNN, GRU, and 

ConvLSTM, trained on a datasets featuring six suspicious 

human activities, including running, punching, falling, 

snatching, kicking, and shooting. Utilizing video frame 

features extracted via the Inception V3 variant of CNN, the 

models demonstrate effective analysis of abnormal human 

behavior in surveillance videos, thereby enhancing security 

measures. 

In [5] The paper introduces a multi-view fight detection 

method for surveillance videos, addressing challenges like 

varying shooting views and potential misjudgments. 

Leveraging optical flow analysis and random forest 

classification, the system computes novel descriptors and 

achieves improved accuracy, reduced false alarms, and 

robustness against different viewpoints on the CASIA 

dataset. This research enhances surveillance systems by 

automating fight detection effectively. 

In [6] The paper proposes an Interaction Relation Model 

(IRM) for multi-person activity recognition, capturing 

interpersonal relations within an Active Multi-person 

Interaction Relationship Estimation Framework. It 

addresses occlusion using an Adaptive Occlusion State 

Behavior Recognition method and implements Multi-

person Interactive Action Recognition with Petri Nets. 

While achieving state-of-the-art performance on benchmark 

datasets, limitations include data requirements and 

computational complexity, necessitating further research 

for real-world applicability. 

In [7] The paper proposes a cloud-assisted multiview video 

summarization (MVS) framework using CNNs and Bi-

LSTMs. It extracts spatial and temporal features from each 

frame, fuses them using Bi-LSTMs, and estimates 

importance scores for frame selection. Achieving state-of-

the-art performance, it reduces computational complexity 

through cloud infrastructure but faces challenges with 

internet reliability, security, and real-time applicability. 

Overall, it offers improved MVS accuracy and efficiency, 

needing further research for scalability and security 

enhancements. 

In [8] The paper presents a Shallow Graph Convolutional 

Network (S-GCN) for skeleton-based action recognition. It 

effectively captures spatial relationships and temporal 

dynamics from human skeleton sequences. The S-GCN 

achieves state-of-the-art performance on benchmark 

datasets with fewer parameters and lower computational 

cost. While successful in capturing spatial relationships, it 

may struggle with long-range temporal dependencies and 

noise sensitivity, requiring further research for 

improvement. 

In [9] The paper conducts a quantitative analysis of four 

object tracking algorithms—Mean Shift, KLT, CSRT, and 

MOSSE—evaluating their performance in accuracy, 

processing time, and memory usage for surveillance 

applications. It offers valuable insights into algorithm 

strengths and weaknesses, providing objective data for 

developers and researchers.  

In [10] The paper evaluates multiple object tracking 

methods in surveillance videos, aiming to provide insights 

into their effectiveness and limitations. It outlines 

experimental setups, including datasets and specific 

tracking algorithms like Mean Shift, KLT, CSRT, and 

MOSSE. The comparative analysis highlights algorithm 

strengths and weaknesses, aiding developers and 

researchers in understanding trade-offs. The work 

contributes by offering a systematic evaluation framework 

and insights into tracking effectiveness, but acknowledges 

limitations such as context-specific constraints and 

challenges in real-world tracking. 

In [11] The paper presents a method for real-time detection 

and recognition of actions using depth camera data. It aims 

to distinguish specific actions from non-interest actions by 

leveraging three-dimensional information. The proposed 

framework integrates computer vision and machine 

learning techniques for continuous action detection and 

recognition. While offering valuable insights, limitations 

include dependence on depth cameras and challenges in 

generalizing to diverse scenarios. 

In [12] The paper offers a thorough guide to object 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
            Volume: 08 Issue: 05 | May - 2024                         SJIF Rating: 8.448                             ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM34663                     |        Page 3 

tracking, organizing diverse methodologies and techniques. 

It covers fundamental principles like feature extraction and 

motion estimation, categorizes tracking scenarios, and 

provides practical guidance. However, it acknowledges 

limitations due to the field's dynamic nature and varying 

depth of coverage for each method. 
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3. IMPLEMENTATION 

From the Fig 3.1, the goal is to process the video data, 

extract relevant features, apply machine learning model for 

detection, and send alert notifications when suspicious 
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activity is detected. Here's a breakdown of the key 

components in this process: 

 

Fig 3.1 System design Flowchart 

1. Dataset Description : KTH dataset for detection of 

Running and Walking and Kaggle dataset for fight 

detection. The KTH dataset is a standard dataset which has 

collection of sequences representing 6 actions and each 

action class has got 100 sequences. Each sequence has got 

almost 600 frames and the video is shot at 25 fps. Kaggle 

Dataset consists of, over 100 videos taken from movies and 

YouTube videos can be used for training suspicious 

behavior (fighting). Thus, we combined both datasets and 

made our own dataset for this model. 

2. Data Pre-processing : Preprocess data which includes 

frame extraction, resizing,  normalizing extracted frames 

and feature extraction from the data.  

Read Video and Label: Using OpenCV Library the videos 

are read from their respective Class folder and their Class 

label is stored inside a numpy array. 

Splitting into frames to make one sequence: Each Video is 

read using OpenCV Library, Only 30 frames at equal time 

intervals are read to form a sequence of 30 frames. 

Resizing: Image resizing is necessary when we need to 

increase or decrease the total number of pixels. So, we 

resized all the frames to width: 64px and height: 64px to 

maintain the uniformity of the input images to the 

architecture. 

Normalization: Normalization will help the learning 

algorithm to learn faster and capture necessary features 

from the images. So, we normalized the resized frame by 

dividing it with 255 so that each pixel value lies between 0 

and 1. 

Store in Numpy Arrays: The sequence of 30 resized and 

Normalized frames are stored in a numpy array to give as 

Input to the Model. 

3. Train Test Split Data : 75% of the data is used for 

Training. 25% of the data is used for Testing. 

4. Model Creation : A deep learning network, LRCN is 

using in our proposed system for suspicious activity 

detection from video surveillance. The main idea behind 

LRCN is to use a combination of CNNs to learn visual 

features from video frames and LSTMs to transform a 

sequence of image embeddings into a class label, sentence, 

probabilities, or whatever you need. Thus, raw visual input 

is processed with a CNN, whose outputs are fed into a stack 

of recurrent sequence models. LSTM networks are well-

suited to classifying, processing and making predictions 

based on time series data, since there can be lags of 

unknown duration between important events in a time 

series. LSTMs were developed to deal with the vanishing 

gradient problem that can be encountered when training 

traditional RNNs. 

5. Model Training : The model is trained to predict over 3 

classes – walking, running and fight The training set is 

given to the model for training, with the following hyper 

parameters: Epochs = 70, Batch_size = 4, Validation_spilt 

= 0.25. 

6. Detecting Human Activity : The processed video 

frames are fed into the pre-trained model, which analyzes 

them to detect human activities. The model identifies 

actions such as walking, running and fighting. 

7. Obtain Fight Detected Frame : When the model detects 

signs of a fight or aggressive behavior, it marks the specific 

frames where these activities occur. These frames are 

extracted and highlighted for further analysis and 

verification. 

8. Image Enhancement : To improve the visibility and 

details of the detected frames, image enhancement 

techniques are applied. This includes: Contrast Adjustment, 

Sharpening and Brightness Correction. 

9. Alert System :The alert system integrated with the 

model notifies authorities in real-time upon detecting 

suspicious activities, providing details like the type of 

activity, location, timestamp and the enhanced fight image 

through email as well as telegram bot. In addition to 

images, the system compiles a video segment that captures 

the entire sequence of the detected activity. This video is 

sent via email to provide a comprehensive view of the 

incident. Additionally, the system can escalate alerts based 

on predefined criteria, ensuring appropriate responses to 

varying threat levels. 
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4. RESULT AND ANALYSIS 

The proposed model “Uncanny Activity Detection Using 

CCTV Monitoring” aims to detect the anomalous behavior 

happening in the video and the system is achieving the 

accuracy of 88% on our created data set. This LRCN model 

with 11 layers became less time consuming and can work in 

REAL-TIME detection as well. The frames are resized to 

64px to save memory space. The dataset of the proposed 

model includes videos of anomalous behavior which is 

Fighting as well as it also contains videos of normal 

behavior which is walking and running. 

5. CONCLUSION 

The project aimed to develop an action recognition system 

using deep learning on video data, specifically to identify 

human actions like walking, fighting, and running. Video 

frames were preprocessed by resizing and normalizing 

them for model input. An LSTM-based Convolutional 

Neural Network (CNN) architecture, known as LRCN, was 

constructed using TensorFlow and Keras to capture spatial 

and temporal features from video sequences. The model 

was trained using categorical cross-entropy loss and the 

Adam optimizer. The trained model accurately classified 

actions on unseen videos, showcasing its potential for 

applications like surveillance and behavior analysis.Future 

directions include exploring different architectures and 

expanding the dataset forbroader real-world applications in 

computer vision. This model can be used for 

furtherintegration of data from multiple sensors (e.g., 

thermal imaging, sound sensors) to enhance the system's 

ability to detect and respond to diverse security threats and 

environmental conditions. 
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