
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 1

Understanding Concepts of NLTK: The Natural Language Toolkit

Thanushree V , Pruthvi B , V Nagasarshan

Course name: Information Retrieval and organization

 Abstract

NLTK, the Natural Language Toolkit, is a suite of

open-source program modules, tutorials, and

problem sets, providing ready-to-use

computational linguistics courseware. NLTK covers

symbolic and statistical natural language

processing and is interfaced to annotated corpora.

Students augment and replace existing

components, learn structured programming by

example, and manipulate sophisticated models

from the outset.

1 Introduction

Educators starting seminars on computational

etymology are often confronted with the challenge

of setting up a commonsense programming part for

understudy tasks and projects. This is a challenging

task on the grounds that different computational

etymology areas require an assortment of different

information structures furthermore, abilities, and

since a different scope of

subjects might be remembered for the schedule.

A far-reaching practice is to use differently

programming dialects, where every language

gives local information designs and abilities

that is a decent ¯t for the main job. For models, a

course could involve Prolog for standards, Perl for

corpus handling, and a definite-state toolbox for

morphological investigation. By depending on the

underlying highlights of different dialects, the

educator tries not to need to foster a great deal of

programming foundation.

A lamentable result is just a significant piece of

such courses should be dedicated to showing

programming dialects. Further, many fascinating

ventures length an assortment of

areas, and would require that different dialects be

spanned. For instance, an understudy project that

elaborates syntactic parsing of corpus information

from a morphologically rich language may include

every one of the three of the dialects referenced

above: Perl for string handling; a definite state

toolbox for morphological examination; and

Prolog for parsing. Obviously these extensive

overheads and weaknesses call for an innovative

approach.

Aside from the functional part, computational

etymology courses may likewise rely upon

programming for in-class showings. This context

calls for an exceptionally intuitive graphical client

interfaces, making it conceivable to see program

state (for example the graph of an outline parser),

notice

program execution bit by bit (for instance

execution of a definite-state machine), and even

make

minor modifications to programs because of

imagine a scenario where" inquiries from the class.

Since

of these difficulties, it is normal to stay away from

life shows and save classes for theoretical

introductions as it were. Aside from being dull, this

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 2

approach passes on understudies to address

significant useful issues all alone or to manage them

less efficiently in one hour.

A streamlined and versatile means of

arranging the practical part of a basic

computational linguistics course in this paper

we introduce a fresh way of the above-

mentioned challenges. We describe NLTK, the

Natural Language Toolkit, which we've

developed in conjunction with a program.

The Natural Language Toolkit is available

under a source that is available from

http://nltk.sf.net/. NLTK runs on all

platforms supported by Python, including

Windows, OS X, Linux, and Unix.

2 Choice of Programming Language

 The most basic step in installing a practical

component is selecting a programming

language that works. Several considerations

affected our option. First, the language will

need to have a learning that is superficial, in

order that novice coders get instant benefits

because of their efforts. Second, the language

must support quick prototyping and a short

develop/test cycle; an obligatory compilation

step is just a detraction that is serious. Third,

the code should be self-documenting, having a

syntax that is clear semantics. Fourth, it ought

to be an easy task to write organized programs,

ideally object-oriented but without the burden

associated with languages like C++. Finally, the

language should have a graphics which can be

easy-to-use to support the growth of graphical

user interfaces. In surveying the available

languages, we believe that Python has a fit that

is especially good the above-mentioned

demands. Python is an object-oriented

language that is scripting by Guido van Rossum

and available on all platforms

(www.python.org). Python provides a learning

that is shallow; it absolutely was built to be

effortlessly learnt by children (van Rossum,

1999). As a language that is interpreted Python

would work for rapid prototyping. Python rule

is exceptionally readable and possesses been

praised as “executable pseudocode.” Python is a

language that is object-oriented not punitively

so, which is easy to encapsulate data and

methods inside Python classes. Finally, Python

comes with a user interface towards the Tk

pictures toolkit (Lundh, 1999), and writing

interfaces being graphical simple.

3 Design Criteria

Several criteria were considered in the design and

implementation of the toolkit. These design criteria

are listed in the order of their importance. It was

also important to decide what goals the toolkit

would not attempt to accomplish; we therefore

include an explicit set of nonrequirements, which

the toolkit is not expected to satisfy.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 3

3.1 Requirements

Easy to use. The main goal of the toolkit is to allow

students to focus on building natural language

processing (NLP) systems. The more time students

must spend learning how to use the toolkit, the less

useful it will be. consistent data structures and

interfaces. Expandability. The toolkit should easily

accommodate new components, regardless of

whether those components replicate or extend the

toolkit's existing functionality. The toolkit should

be structured in such a way that it is obvious where

new extensions would fit into the toolkit

infrastructure. Documentation. Data structures and

their implementation must be carefully and

comprehensively documented. All nomenclature

must be carefully selected and used consistently.

Simplicity. The toolkit should structure, not hide,

the complexity of building NLP systems. Therefore,

each class defined by the toolkit must be simple

enough for a student to implement when finished.

an introductory course in computational linguistics.

modularity. Interaction between the different

components of the toolset should be kept to a

minimum using simple and well-defined interfaces.

Specifically, it should be possible to complete

individual projects using small pieces of the toolset

without worrying about how they interact with the

rest of the toolset. toolbox. This allows students to

gradually learn how to use the toolkit during a

course. The modularity also makes it easy to change

and expand the toolkit.

3.2 non-Requirements

Completeness. The toolset is certainly not designed

to provide a complete set of tools. In fact, there

should be a variety of ways students can extend the

toolkit. Efficiency: The toolset does not need to be

heavily optimized for runtime performance.

However, it must be efficient enough for students to

use their NLP systems to perform real tasks

Intelligence: Clean designs and implementations

are preferable to clever but undecipherable ones.

4 Modules

The toolkit is enforced as a series of freelancing

modules, each of which outlines a specific

arrangement or task.

Throughout the toolkit, a collection of core

modules defines the basic information varieties

and process systems. Using the token module,

you can process individual elements of text,

words, or sentences. Tree modules represent

tree structures over text using data structures

such as syntax trees and morphological trees.

There are classes in the chance module that

write frequency distributions and probability

distributions, as well as a range of applied

mathematics smoothing techniques.

Data structures and interfaces for playacting

specific NLP tasks are also defined in the

remaining modules. Adding new tasks and

algorithms to the toolkit can result in this list of

modules growing over time. Parsing Modules

In the parser module, trees that represent text

structures are represented as high-level interfaces.

As part of the chunk parser module, parsers that

recognize nonoverlapping linguistic groups (such

as noun phrases) are offered a sub-interface.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 4

Implementations of these abstract interfaces are

provided by four modules. A shift-reduce parser is

implemented by the srparser module. Using a chart

to record hypotheses about syntactic constituents,

the chart parser module defines a flexible parser.

PCFGparser offers several different probabilistic

parsers grammars. And the rechunk parser module

defines a transformational regular expression-

based implementation of the chunk parser

interface.

Tagging Modules

In the tagger module, supplementary information

such as the token's part of speech and WordNet

synset tags are added to each token and several

different implementations are provided for this

interface. Finite State Automata

The fsa module defines a data type for encoding

finite state automata; and an interface for creating

automata from regular expressions.

Type Checking

An important factor in the toolkit's ease of use is the

debugging time. A type-checking module reduces

the number of time students must spend debugging

their code by ensuring that functions are given valid

arguments. All the basic types of data and

processing classes utilize the type-checking

module.

The toolkit may run slower since type checking is

explicitly done.

Visualization

The draw. Plot chart component could possibly

be utilized to graph functionality being

numerical. The draw’s component creates an

appliance this is certainly graphical displaying

and simulating declare that was limited . The

draw. Chart component has a software that will

be entertaining are visual tinkering with chart

parsers.

The visualization segments give connects for

communication and testing; they simply try not

to right apply NLP information frameworks or

activities. Ease of execution was thus a reduced

amount of a pressing problem when

considering visualization segments than it

truly is for many of the different toolkit.

 Visualization segments seeing that will be

establish information frameworks, and visual

apparatus for testing out NLP jobs. The draw

tree component offers a program this is

certainly smooth are visual exhibiting forest

structures. The draw tree modify component

offers a software for building and modifying

forest buildings.

Text Classification

The classifier component describes a screen

this is certainly regular classifying texts into

groups. This screen happens to be applied by

two segments. The classifier naive Bayes

component describes a book classifier

according to the Bayes this is certainly naive

presumption. The classifier maxent module

describes the entropy this is certainly greatest

for book category and implements two

formulas for exercises the unit: Generalized

Iterative Scaling and Improved Iterative

Scaling.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 5

The classifier features election module

describes a regular user interface for selecting

featuring is pertinent to get a category project

this is certainly specific. Close element option

can fix category show notably

The classifier feature component offers a

common encoding for your info which is used

to create choices regarding category job this is

certainly specific. These expectations encoding

allows students to try out the distinctions

between various book category formulas,

making use of function this is certainly similar.

5 Documentation

The toolkit is coupled with extensive

paperwork which explains the toolkit and

represent ways to use and expand it. This

record is divided in to three classes being main

Training instructs youngsters strategies for the

toolkit, within the perspective of executing jobs

that include certain. Each guide focuses

primarily on a site that will be unmarried these

as marking, probabilistic techniques, or book

category. The training adds a conversation that

will be high-level details and inspires the site,

followed closely by an in-depth walk-through

that makes use of instances to display just how

NLTK enables you to do activities.

Specialized states describe and validate the

toolkit’s execution and concept. The builders

make use of them regarding the toolkit to steer

and record the toolkit’s development. College

students may also seek advice from this

research it's designed this way should they

need more information on how the toolkit was

created, and just why.

Resource records produces descriptions which can

be accurate every component, user interface,

lessons, strategy, features, and changeable during

the toolkit. It's instantly taken from docstring

commentary within the Python provider laws,

utilizing Epydoc (Loper, 2002).

6 Uses of NLTK

6.1 Assignments

The chunking motivates that were tutorial

parsing, describes each guideline type, and

offers almost all the signal that is essential the

project. The code that is given in charge of

loading the chunked, part-of-speech text that is

marked a pre-existing tokenizer, creating an

unchunked type of the writing, using the

amount principles in to the unchunked text,

and scoring the impact. College students pay

attention to the NLP chore only – providing a

guideline set aided by the coverage that is most

readily useful.

Example: Amount Parsing

For instance, ChunkRule(’<NN.*>’) builds

chunks from sequences of successive nouns;

ChinkRule(’<VB.>’) excises verbs from present

pieces; Split Rule(’<NN>’, ’<DT>’) splits any

chunk that is actually existing includes a noun

that will be singular closely by determiner into

two pieces; and Merge Rule(’<JJ>’, ’<JJ>’)

combines two adjacent chunks whenever in

actuality the earliest amount ends while the

second chunk begins with adjectives.

For instance, of an assignment that is

moderately difficult we asked students to

generate a chunk parser that correctly

identifies base noun expression chunks in

confirmed text, by identifying a cascade of

transformational rules that are chunking. The

NLTK rechunk parser module supplies many

regular expressions this is certainly various

rule type, that the students can instantiate to

produce rules that are complete.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 6

NLTK can help create student assignments of

varying difficulty and scope. When you glance

at the simplest assignments, children

experiment a module that is existing. The range

that will be wide of modules provide most

opportunities for generating these tasks that

are straightforward. As soon as students are

more acquainted with the toolkit, they were

able to be questioned to make adjustment that

are minor extensions in a module that is

present. A much more task that is challenging

be produce a module that was new. Right here,

NLTK provides some useful points being

starting predefined connects and data

structures, and existing modules that

implement the interface that is same.

Within the remainder with this section, we

replicate a true number of the cascades created

by the youngsters. The example that is first a

mixture of a few rule types:

cascade = [

ChunkRule(’<DT><NN.*><VB.><NN.*>’),

ChunkRule(’<DT><VB.><NN.*>’),

ChunkRule(’<.*>’),

UnChunkRule(’<IN|VB.*|CC|MD|RB.*>’),

UnChunkRule("<,|\\.|‘‘|’’>"),

MergeRule(’<NN.*|DT|JJ.*|CD>’,

’<NN.*|DT|JJ.*|CD>’),

SplitRule(’<NN.*>’, ’<DT|JJ>’)]

The second example illustrates a brute-force

approach that is statistical. The student

calculated how many times each part-of-

speech tag was contained in a noun phrase.

They then constructed chunks from any

sequence of tags that took place a noun phrase

a lot more than 50% of that time.

cascade = [

ChunkRule(’<\\$|CD|DT|EX|PDT

|PRP.*|WP.*|\\#|FW

|JJ.*|NN.*|POS|RBS|WDT>*’)

]

cascade = [

ChunkRule(’<.*>+’)

ChinkRule(’<VB.*|IN|CC|R.*|MD|WRB|TO|.|,>

+’)

]

6.2 Class demonstrations

NLTK supplies tools that are graphical can feel

used in class demonstrations to simply help explain

basic NLP concepts and algorithms. These tools

which can be interactive be used to show related

data structures and to demonstrate the step-by-

step execution of algorithms. Both information

frameworks and regulation flow tend to be easily

modified during the demonstration, in reaction to

questions from the class.

Since these tools that include graphical included

with the toolkit, they can be used by college

students. This allows pupils to experiment at home

making use of algorithms that they have seen

presented in class.

Example: The Chart Parsing Tool

The chart tool this is certainly parsing the

process of parsing a single sentence, with a

given grammar and lexicon. Its display is

divided into three sections: the bottom section

displays the chart; the middle section displays

the sentence; and the top section displays the

syntax that will be partial corresponding

towards the selected edge. Buttons along the

base of the windows is used to control the

execution of the algorithm. The display that is

main for the chart parsing appliance is shown

in Figure 1.

This tool could be used to explain several

different facets of chart parsing. First, it is

generally used to explain chart that will be

basic design, and to display how edges can

represent hypotheses about syntactic

constituents. It could then be used to

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 7

demonstrate and describe the individual rules

that the chart parser uses to generate edges

that are new. Finally, it enables you to show just

how

These specific rules combine to locate a parse

this is certainly complete a given sentence.

The data tool that are parsing for flexible

command over the parsing algorithm. The

consumer can select which guideline or method

they want to apply at each step of the formula.

This permits the user to experiment with

mixing strategies that are differente.g., top-

down and bottom-up). The user can exercising

controls this is certainly fine-grained the

formula by selecting which edge they wish to

make use of a tip to. This flexibility permits

lecturers to utilize the tool to respond to a

variety that is wide of

The user can determine a listing of

predetermined charts to reduce the cost of

setting up demonstrations during lecture. The

device can be reset to then any one of them

charts at anytime.

The chart tool that is parsing a typical example

of a tool that is graphical by NLTK. This tool

may be employed to explain the principles that

were chart that will be fundamental, and to

show how the algorithm works. Chart parsing

try a parsing that is flexible that utilizes a

information framework also known as a given

information to register hypotheses about

syntactic constituents. A edge represents each

theory that try single the information and

knowledge. A group of principles determine

whenever edges which are brand-new be part

of the data. This ready of rules handles the

habits that are total of parser (e.g., whether or

not it parses bottom-up or top-down).

Figure 1: Chart Parsing Tool

The consumer can establish a list of present

charts to lessen the expense of installing

demonstrations during lecture. The tool can be

reset to then any one of those maps at any

time.The chart software that will be parsing for

versatile controls of the parsing algorithm. The

user can select which rule or strategy they

desire to apply at each step regarding the

formula. This permits an individual to

experiment with blending strategies that are

different., top-down and bottom-up). The user

can exercise control that is fine-grained the

algorithm by selecting which edge they wish to

apply a rule to. This flexibility allows lecturers

to make use of the device to react to a variety

that will be wide of

7.2 Conclusions and Future Work

NLTK supplies an easy, extensible, consistent

platform for assignments, works, and class

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 8

demonstrations. It is well noted, easy to master,

and simple to make utilize of. We hope that

NLTK will enable computational linguistics

classes to include more experience that is using

that is hands-on building NLP components and

systems.

NLTK is unique for the mixture off three

issues. First, it was purposely developed as

courseware and provides needs which can be

pedagogical that is primary. Second, the target

readers consist of both linguists and scientists

that include pc plus it really is accessible and

challenging at many levels of earlier skill that

include computational. Sooner or later, it is

reliant on a scripting that is object-oriented

supporting quick prototyping and

programming that is literate. We choose to

continue extending the breadth of products

covered from the toolkit. We become currently

operating on NLTK modules for concealed

Markov types, language modelling, and tree

grammars that comprise adjoining. We

additionally propose to boost the actual

number of formulas applied by some modules

which can be established for instance the book

classification module. Discovering corpora that is

correct a necessity for scholar tasks which were

many and projects. We are therefore placing

collectively a class that is matched of data that

become containing for every module defined from

the toolkit.NLTK is a source that will be open, and

we welcome any contributions. Readers who are

interested in adding to NLTK, or exactly who have

ideas for modifications, add encouraged to contact

the writers.

10 Acknowledgments

We are indebted to our students for feedback

on the toolkit, and to anonymous reviewers, Jee

Bang, and the workshop organizers for

comments on an earlier version of this paper.

We are grateful to Nasar Uddin and the

Department of and Information Science at the

Presidency university for sponsoring the work

reported here.

References

Jason Baldridge, John Dowding, and Susana
Early. 2002a. Leo: an architecture for sharing
resources for unification-based grammars. In
Proceedings of the Third Language Resources
and Evaluation Conference. Paris: European
Language Resources Association.
http://www.iccs.informatics.ed.ac.uk/
~jmb/leo-lrec.ps.gz.

Jason Baldridge, Thomas Morton, and Gann
Bierner. 2002b. The MaxEnt project.
http://maxent.sourceforge.net/.

Kenneth R. Beesley and Lauri Karttunen. 2002.
Finite-State Morphology: Xerox Tools and
Techniques. Studies in Natural Language
Processing. Cambridge University Press.

View publication stats

Kalina Bontcheva, Hamish Cunningham, Valentin
Tablan, Diana Maynard, and Oana Hamza. 2002.
Using GATE as an environment for teaching NLP.
In Proceedings of the ACL Workshop on Effective
Tools and Methodologies for Teaching NLP and CL.
Somerset, NJ: Association for Computational
Linguistics.

Philip R. Clarkson and Ronald Rosenfeld. 1997.
Statistical language modelling using the CMU-
Cambridge Toolkit. In Proceedings of the 5th
European Conference on Speech Communication
and Technology (EUROSPEECH ’97). http://svr-
www.eng.cam.ac.uk/~prc14/ eurospeech97.ps.

Ann Copestake. 2000. The (new) LKB system.
http://www-csli.stanford.edu/~aac/doc5-2. pdf.

http://www.ijsrem.com/
https://www.researchgate.net/publication/220482883

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14754 | Page 9

Michael Hammond. 2002. Programming for
Linguistics: Java Technology for Language
Researchers. Oxford: Blackwell. In press.

Jonathan Harrington and Steve Cassidy. 1999.
Techniques in Speech Acoustics. Kluwer.

John M. Lawler and Helen Aristar Dry, editors. 1998.
Using Computers in Linguistics. London:
Routledge.

Edward Loper. 2002. Epydoc.
http://epydoc.sourceforge.net/.

Fredrik Lundh. 1999. An introduction to tkinter.
http://www.pythonware.com/library/
tkinter/introduction/index.htm.

Kazuaki Maeda, Steven Bird, Xiaoyi Ma, and
Haejoong Lee. 2002. Creating annotation tools
with the annotation graph toolkit. In Proceedings
of the Third International Conference on Language
Resources and Evaluation. http://arXiv.org/
abs/cs/0204005.

Fernando C. N. Pereira and David H. D. Warren.
1980. Definite clause grammars for language
analysis – a survey of the formalism and a
comparison with augmented transition
grammars. Artificial Intelligence, 13:231–78.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Chicago University
Press.

Guido van Rossum. 1999. Computer programming
for everybody. Technical report, Corporation for
National Research Initiatives. http:
//www.python.org/doc/essays/cp4e.html.

http://www.ijsrem.com/

