
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 03 Issue: 06 | June - 2019 SJIF Rating: 5.713 ISSN: 2582-3930

© 2019, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM2652 | Page 1

Unique Sequence Generator for Symmetric Encryption and Decryption

Dr. G. Sreedhar

Department of Computer Science

Rashtriya Sanskrit Vidyapeetha, Tirupati

Abstract This paper introduces a novel symmetric

encryption and decryption method utilizing a pseudo-

random number generator (Xorshift) to produce a

unique sequence. This sequence is employed to shift

characters in a plaintext message, achieving encryption,

and can be used to restore the original message during

decryption. The approach is implemented through a

web-based application using HTML and JavaScript.

Key Words: Pseudo-random number generator,

encryption, decryption,

1.INTRODUCTION

Cryptography plays a pivotal role in securing data across

various platforms. Traditional encryption algorithms

often rely on complex mathematical functions. This

study explores an alternative method by generating a

unique sequence using a pseudo-random number

generator and employing it for both encryption and

decryption processes.

2. METHODOLOGY

2.1 Pseudo-Random Number Generation

A Pseudo-Random Number Generator (PRNG) is an

algorithm that produces a sequence of numbers that

approximates the properties of random numbers. Unlike

true random number generators, which rely on physical

processes, PRNGs are deterministic and produce the

same sequence from a given initial state, known as the

seed.

The Xorshift algorithm, introduced by George

Marsaglia in 2003, is a class of PRNGs that operates by

repeatedly applying the exclusive OR (XOR) operation

combined with bit shifts on an internal state variable.

This method is computationally efficient and produces

sequences with good statistical properties, making it

suitable for applications like encryption where speed

and randomness are crucial.

The basic Xorshift algorithm involves the following

steps:

1. State Initialization: Start with a non-zero seed

value.

2. Bit Shifting and XOR Operations: Apply a

series of bit shifts and XOR operations to the

state variable.

3. Output Generation: The resulting value after

the operations is the next number in the

sequence.

4. State Update: The state is updated for the next

iteration.

This process is repeated to generate a sequence of

pseudo-random numbers.

2.2 Sequence Generation

The generated sequence consists of 26 unique numbers

corresponding to the 26 letters of the English alphabet.

This sequence is used to shift the position of each

character in the plaintext message.

2.3 Encryption Process

2.3.1 Overview

In symmetric encryption, the same key is used for both

encryption and decryption. In this project, the "key" is a

unique sequence generated using the Xorshift pseudo-

random number generator. This sequence determines

how each character in the plaintext is transformed into

ciphertext.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 03 Issue: 06 | June - 2019 SJIF Rating: 5.713 ISSN: 2582-3930

© 2019, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM2652 | Page 2

2.3.2 Detailed Steps

1. Input and Sequence Generation: The user

provides a seed value. The Xorshift algorithm uses

this seed to generate a sequence of 26 unique

numbers, each corresponding to a letter in the

English alphabet.

2. Mapping Letters to Sequence: The 26 letters of

the English alphabet are assigned to the generated

sequence. For example, if the sequence starts as [3,

1, 4, 2, 5, ...], then 'A' maps to 3, 'B' to 1, 'C' to 4,

and so on.

3. Encrypting the Plaintext:

o For each character in the plaintext:

▪ If the character is an uppercase

letter (A-Z):

▪ Determine its position in

the alphabet (e.g., 'A' = 0,

'B' = 1, ..., 'Z' = 25).

▪ Add the corresponding

value from the sequence to

this position.

▪ Use modulo 26 arithmetic

to ensure the result wraps

around within the alphabet

range.

▪ Replace the original

character with the new

character obtained from the

shifted position.

▪ If the character is not an uppercase

letter, it remains unchanged.

4. Output: The transformed characters are

concatenated to form the ciphertext.

 Example:

• Seed: 12345

• Generated Sequence: [3, 1, 4, 2, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26]

• Plaintext: "HELLO"

• Ciphertext: "KHOOR"

2.4 Decryption Process

The ciphertext is processed by shifting each character

backward by the corresponding value in the sequence,

restoring the original plaintext.

2.4.1 Overview

Decryption is the reverse process of encryption. Since

the same sequence is used for both operations, applying

the inverse transformation restores the original

plaintext.

2.4.2 Detailed Steps

1. Input and Sequence Generation: The user

provides the same seed value used during

encryption. The Xorshift algorithm generates the

same sequence of 26 unique numbers.

2. Mapping Letters to Sequence: The 26 letters of

the English alphabet are assigned to the generated

sequence, identical to the encryption process.

3. Decrypting the Ciphertext:

o For each character in the ciphertext:

▪ If the character is an uppercase

letter (A-Z):

▪ Determine its position in

the alphabet (e.g., 'A' = 0,

'B' = 1, ..., 'Z' = 25).

▪ Subtract the corresponding

value from the sequence

from this position.

▪ Use modulo 26 arithmetic

to ensure the result wraps

around within the alphabet

range.

▪ Replace the encrypted

character with the new

character obtained from the

shifted position.

▪ If the character is not an uppercase

letter, it remains unchanged.

4. Output: The transformed characters are

concatenated to form the decrypted plaintext.

Example:

• Seed: 12345

• Generated Sequence: [3, 1, 4, 2, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26]

• Ciphertext: "KHOOR"

• Decrypted Plaintext: "HELLO"

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 03 Issue: 06 | June - 2019 SJIF Rating: 5.713 ISSN: 2582-3930

© 2019, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM2652 | Page 3

In this example, each letter of "KHOOR" is shifted

backward by the corresponding value in the sequence,

restoring the original plaintext "HELLO".

3. ALGORITHM

The following pseudocode outlines the steps involved

in generating the unique sequence, encrypting the

message, and decrypting the ciphertext.

3.1 Generate Unique Sequence

Function GenerateUniqueSequence(seed):

 Initialize empty list sequence

 Initialize empty set seen

 Initialize random number generator rng using seed

 While length of sequence < 26:

 num = Floor(rng() * 26) + 1

 If num is not in seen:

 Add num to seen

 Append num to sequence

 Return sequence

3.2 Encrypt Message

Function EncryptMessage(message, sequence):

 Initialize alphabet as

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Initialize empty string encrypted_message

 For each character in message:

 If character is in alphabet:

 index = Index of character in alphabet

 shift = sequence[index]

 new_index = (index + shift) mod 26

 Append alphabet[new_index] to

encrypted_message

 Else:

 Append character to encrypted_message

 Return encrypted_message

3.3 Decrypt Message

Function DecryptMessage(encrypted_message,

sequence):

 Initialize alphabet as

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Initialize empty string decrypted_message

 For each character in encrypted_message:

 If character is in alphabet:

 index = Index of character in alphabet

 shift = sequence[index]

 new_index = (index - shift + 26) mod 26

 Append alphabet[new_index] to

decrypted_message

 Else:

 Append character to decrypted_message

 Return decrypted_message

4. IMPLEMENTATION

The implementation is carried out using HTML for the

user interface and JavaScript for the logic. The user

inputs a seed and a message, and the application

displays the generated sequence, encrypted message,

and decrypted message.

Figure 1: Encryption using sequence generator

Figure 2: Decryption using sequence generator

5. CONCLUSION

This approach provides a simple yet effective method

for symmetric encryption and decryption. The use of a

pseudo-random number generator ensures that the

sequence is unique and reproducible, allowing for

secure communication. However, the security of this

method depends on the unpredictability of the pseudo-

random number generator and the secrecy of the seed.

The unique sequence generator offers a straightforward

method for encrypting and decrypting messages. While

not suitable for high-security applications, it serves as

an educational tool for understanding the principles of

symmetric encryption.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 03 Issue: 06 | June - 2019 SJIF Rating: 5.713 ISSN: 2582-3930

© 2019, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM2652 | Page 4

6. REFERENCES

1. Marsaglia, G. (2003). Xorshift Random Number

Generators. Journal of Statistical Software, 14(6),

1–10.

https://www.jstatsoft.org/article/view/v014i06

2. Rivest, R. (1987). RC2: A Fast Block Cipher.

Proceedings of the 1987 IEEE Symposium on

Security and Privacy, 1–9.

https://ieeexplore.ieee.org/document/623380

3. Schneier, B., Kelsey, J., & Wagner, D. (1997).

Digital Cell Phone Crypto Cracked. Wired.

https://www.wired.com/1997/03/digital-cell-phone-

crypto-cracked

4. Lai, X., & Massey, J. (1991). International Data

Encryption Algorithm. Proceedings of the 1991

IEEE International Conference on

Communications, 1, 131–136.

https://ieeexplore.ieee.org/document/140016

5. Wikramaratna, R. S. (1989). ACORN — A New

Method for Generating Sequences of Uniformly

Distributed Pseudo-random Numbers. Journal of

Computational Physics, 83(1), 16–31.

https://doi.org/10.1016/0021-9991(89)90002-2

6. Jenkins, R. J. (1996). ISAAC: A Fast

Cryptographic Pseudorandom Number Generator.

Fast Software Encryption, 41–49.

https://www.schneier.com/academic/archives/1996/

02/isaac_a_fast_cr.html

7. Bhattacharjee, K., Maity, K., & Das, S. (2018). A

Search for Good Pseudo-random Number

Generators: Survey and Empirical Studies. arXiv.

https://arxiv.org/abs/1811.04035

8. 8. Lemire, D., & O'Neill, M. E. (2014). PCG: A

Family of Simple Fast Space-Efficient Statistically

Good Algorithms for Random Number Generation.

Proceedings of the 2014 ACM SIGPLAN

International Conference on Functional

Programming, 1–12.

https://doi.org/10.1145/2628136.2628148

http://www.ijsrem.com/
https://www.jstatsoft.org/article/view/v014i06
https://ieeexplore.ieee.org/document/623380
https://www.wired.com/1997/03/digital-cell-phone-crypto-cracked
https://www.wired.com/1997/03/digital-cell-phone-crypto-cracked
https://ieeexplore.ieee.org/document/140016
https://doi.org/10.1016/0021-9991(89)90002-2
https://www.schneier.com/academic/archives/1996/02/isaac_a_fast_cr.html
https://www.schneier.com/academic/archives/1996/02/isaac_a_fast_cr.html
https://arxiv.org/abs/1811.04035
https://doi.org/10.1145/2628136.2628148

