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Abstract - Research in mental health has proposed the 

application of technologies that allow the analysis of 

substantial amounts of data and the provisioning of 

mechanisms to monitor and diagnose the health status of 

individuals with the objective of improving their quality of 

life. Mental stress has been widely addressed in this type of 

research as it is widely acknowledged as a condition that leads 

to negative impacts on modern life. Several studies have been 

directed to the generation of datasets with data from 

physiological signals obtained through sensors and the public 

availability of such datasets for further research. One of the 

main approaches for the processing and analysis of these 

datasets has been the use of Machine Learning techniques. 

This study explores the use of Machine Learning techniques 

to analyze a dataset consisting of mental stress level 

classification data from electroencephalograms. Different 

Machine Learning models were compared. The Multilayer 

Perceptron model presented the best performance with an 

accuracy rate of 98.99% in the predictions. The results 

demonstrate the potential of Machine Learning techniques as 

aiding tools to health monitoring and diagnosis. 
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1. INTRODUCTION 

 
Several pieces of research have been developed in recent 

years addressing the use of technologies for the monitoring and 

diagnosis of mental health in individuals. According to Kang 

and Chai [1], the main reasons for the increased interest in 

these studies stem from the fact that billions of people around 

the world currently suffer from mental health problems and the 

fact that a considerable increase in the costs of mental health 

management is expected in the forthcoming years. 

The need to improve health care as to promote the mental 

well-being of individuals has led to the development and 

improvement of sensors capable of monitoring biological 

signals and recording data about the mental state of 

individuals. According to Sheik et al. [2], sensor-based mental 

health monitoring and diagnosis methods have advantages over 

traditional methods because they are more objective and 

accurate due to relying on the direct measurement of 

physiological data, whereas traditional methods are more 

subjective and prone to distortion because they usually rely on 

self-report interviews and questionnaires of individuals. 

Another advantage of sensor-based methods, as quoted by Can 

et al. [3], is that sensors allow data to be recorded at the exact 

moment when events occur, hence increasing the possibility of 

obtaining accurate, relevant information, whereas traditional 

methods may fail to record useful information due to 

individuals’ forgetfulness. 

As a result of the complexity and the large amount of data 

generated by the use of sensors, the development of software 

solutions for the processing and analysis of such data has also 

increased, aiming to extract insights that allow a better 

understanding of the physiological changes occurring in the 

body of individuals and support decision-making in the 

medical field. According to Can et al. [3], complex software 

solutions have been developed to explore the capabilities of the 

devices more efficiently and deal with the challenge of 

processing large volumes of data within a short period of time. 

According to Hickey et al. [4], the mental disorders that 

have been the focus of most interest in this research are stress, 

anxiety, depression, schizophrenia, and sleep disorders. Stress 

has received great attention and has been widely approached 

because, according to Hickey et al. [4] and Long et al. [5], 

chronic stress can increase the risk of cardiovascular diseases, 

even resulting in death, which justifies the interest in 

developing mechanisms to monitor and prevent this disorder. 

This study proposes the use of Machine Learning 

techniques to analyze stress levels in electroencephalogram 

data. The study aims to explore different Machine Learning 

models and verify which one achieves better performance in 

dealing with the problem under study. 

 

 

2. BACKGROUND 

 

2.1. Types of sensors 

 

Wearable sensors are devices attached to the skin of 

individuals and designed to capture physical, chemical as well 

as biological signals. The use of such devices provides 

information about various vital signs such as body 

temperature, blood pressure, breathing rate, heart rate, and 

brain electrical activity. Some sensors can obtain vital signs 

through electrodes attached to certain parts of the body, such as 

the forehead, scalp, chest, wrist, and fingers. Typically, these 

are the larger pieces of equipment, restricted to medical clinics, 
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laboratories, and hospitals. There are also smaller sensors such 

as smart watches, smart bracelets, and smart shirts; these 

sensors are versatile enough to be used anywhere and allow the 

monitoring of individuals as they perform common everyday 

activities. According to Luo and Gao [6], wearable sensors 

have been improved in recent years to increase the accuracy of 

their measurements through the use of materials with enhanced 

sensitivity and performance as well as provide individuals with 

a less invasive and more comfortable experience that allows 

the device to be used in everyday situations over longer 

periods of time. 

Certain studies have also analyzed the use of sensors built 

into smartphones, such as the accelerometer, gyroscope, and 

global positioning system (GPS). Although this type of sensor 

is not considered wearable as it is not physically connected to 

the human body, it also allows the collection of data about the 

behavior and actions of individuals. According to Kulkarni et 

al. [7], some motivators for the use of smartphones in mental 

health monitoring and diagnosis are the widespread adoption 

of the devices in recent years, in addition to the feasibility of 

easily carrying the devices to different locations and allowing 

the monitoring of individuals while performing a variety of 

activities. While the use of these devices opens up a range of 

new possibilities for research, the authors also agree upon the 

existence of advantages and disadvantages in comparison to 

wearable sensors; and the choice for a particular type of sensor 

may depend on several factors such as data collection 

environments, the degree of freedom of the individuals, in 

addition to the type of signals to be monitored. 

 

2.2. Mental Health and Stress 

 

The term “stress” stands for “tension” or “pressure”. It 

was first used by the Hungarian physician Hans Selye in a 

1936 publication. Stress can be defined as a response of the 

body to external stimuli (also called stressors), which are 

perceived as demands or threats from the external 

environment. The action of such stressors generates an 

emotional arousal that leads the brain to trigger a process of 

adaptation to the environment. This process generates the 

secretion of certain hormones that can cause emotional, 

behavioral, and physical changes in the individual.  

According to Shahsavarani et al. [8], stress generated at 

low levels is considered useful and desirable since it is a 

mechanism of adaptation and reaction to the various situations 

to which the individual is exposed in everyday life. This 

mechanism enables the individual to overcome challenges and 

thrive in dynamic environments. However, stress generated at 

high levels is harmful to the individual because it can trigger 

psychological as well as physiological problems that 

compromise the quality of life.  

Stress is commonly classified into acute stress (short-term) 

or chronic stress (long-term). This classification considers the 

amount of time the body is exposed to a given stressor. 

According to McEwen and Akil [9], during acute stress, a 

rapid activation of the mechanism that triggers the secretion of 

associated hormones is observed, and the process ceases within 

a short time in order to avoid an overload in the organism as a 

result from the strong action of hormones. During chronic 

stress, the organism is exposed to stressors for a long period of 

time and, although it is not as intense as acute stress, the long 

exposure to stressors can cause the mechanism to become 

deregulated and allow the generation of imbalances in the 

organism that can lead to hypertension, heart attack and stroke. 

The brain communicates with other organs in the body 

through the Autonomic Nervous System (ANS). The ANS 

enables the involuntary control of vital functions such as heart 

rate, blood pressure, respiratory rate, bowel function, and skin 

temperature. The ANS is divided into two parts: the 

Sympathetic Nervous System (SNS) and the Parasympathetic 

Nervous System (PNS). When the organism is exposed to 

stressors, the SNS goes into action through the release of 

hormones that cause the physiological changes required for the 

organism to adapt to the external environment. At the end of 

the stressful event, the PNS goes into action, inhibiting the 

effects of the SNS, with the objective of returning the 

organism to a state of homeostasis (internal stability). The two 

systems operate together and a balance between them is 

necessary for a healthy functioning of the organism. According 

to Shahsavarani et al. [8], chronic stress can affect the balance 

between the SNS and the PNS, and an irregular functioning of 

the system may lead to organism exhaustion. 

Stress detection has been based on the analysis of 

psychological signals, physiological signals, and behavioral 

symptoms. An example of a psychological signal is an 

individual’s own perception of his or her mental state by 

completing a questionnaire. An example of a physiological 

sign is the set of hormonal changes that take place in an 

individual’s body in response to a stressful event. An example 

of a behavioral symptom is a change in the speed at which an 

individual moves. While psychological signs and behavioral 

symptoms are more subjective, physiological signs are 

considered more concrete and precise. 

According to Baran [10], Long et al. [3], and Can et al. 

[3], solutions towards the detection of physiological stress 

signals have been based mostly on the analysis of data from 

the brain, heart, skin or blood, and the most common tests are: 

electroencephalogram (EEG), electrocardiogram (ECG), 

electromyogram (EMG), electrodermal activity (EDA), skin 

temperature (ST), galvanic skin response (GSR), blood 

pressure (BP), blood volume pulse (BVP), thermal imaging 

(TI) and salivary cortisol. 

Several studies have been conducted with the participation 

of volunteers monitored in controlled environments while 

performing a stress-inducing task and having their 

physiological signals recorded. Natasha et al. [11] cite as 

examples of stress-inducing tasks: solving complex 

mathematical tests, vehicle driving simulators, and the color 

and word test (widely known as the Stroop test). Dham et al. 

[12] cite as examples of stress-inducing tasks: viewing videos 
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on a given topic, public presentations, and playing numerical 

calculation games. 

 

2.3. Electroencephalogram and Brainwaves 

 

The Electroencephalogram (EEG) is a device that makes it 

possible to record the electrical activity of the brain through 

the use of electrodes connected to the scalp. As iMotions [13] 

puts it, when compared to other brain imaging analysis 

techniques, the EEG is considered as a low cost, lightweight, 

portable, non-invasive, and passive recording system. Also 

according to iMotions [13], an important advantage of the EEG 

is its high time resolution, which allows hundreds of data 

instances to be recorded in a one-second time interval. 

The EEG measures voltage fluctuations resulting from 

ionic current inside neurons. The signal obtained represents the 

frequency of neural oscillation and is measured by the Hertz 

unit (Hz). According to Kumar and Bhuvaneswari [14], 

researchers have defined frequency bands for signal 

classification. The so-called bands or brainwaves are divided 

into five categories: delta waves (1-4 Hz), theta waves (4-8 

Hz), alpha waves (8-12 Hz), beta waves (13-25 Hz) and 

gamma waves (25-100 Hz). 

Research has shown that each type of brainwave is 

associated with certain mental states and is produced mostly in 

certain areas of the brain. According to Kumar and 

Bhuvaneswari [14], the generation of each type of wave causes 

the production of certain hormones, which allows inferring, for 

instance, the association of the types of waves with certain 

disorders or diseases. 

The EEG is basically composed of electrodes, conductive 

gel, signal amplifier and signal converter (analog/digital). The 

device is considered flexible because it allows different 

configurations of the number of electrodes and their 

positioning on the scalp. According to iMotions [13], the most 

used electrode configuration standard is the so-called 10-20 

System, which was proposed in 1957 by Heber Jasper and was 

recognized by the American Encephalographic Society in 1994 

as the gold standard. As shown in Fig 1, this system defines 21 

positions on the scalp and each position is identified by an 

acronym that represents the region or brain lobe where the 

electrode is positioned. 

 

2.4. Datasets and Machine Learning 

 

Data captured by wearable sensors have been made 

available through public datasets. According to Garg et al. [15] 

and Zainudin et al. [16], the initiative of making such datasets 

available has favored the work of researchers by allowing them 

to conduct their studies even without having participated in the 

data collection experiments. 

Machine Learning techniques have been used to process 

datasets and provide learning through data analysis. The main 

goal of using Machine Learning in stress analysis has been the 

production of models that are able to learn patterns from the 

data and allow making predictions about the level of stress in 

individuals. According to Mozgovoy [17], Kyamakya et al. 

[18] and Garg et al. [15], several studies have applied the main 

Machine Learning algorithms in dataset analysis and evaluated 

their performance through metrics established in the literature 

in order to indicate which algorithm produces better accuracy 

in its predictions. According to Ahuja and Banga [19], and 

Kene and Thakare [20], several studies have reported results 

with accuracy rates over 80% in the prediction of stress levels, 

which was considered a satisfactory result in this context. 

According to Priya et al. [21], several researchers have applied 

different Machine Learning algorithms and obtained different 

accuracy rates depending on the scenario, which shows that a 

single algorithm is not the best to every situation, and that such 

studies have been conducted following an empirical approach. 

 

 
Figure 1 - Positioning System 10-20. 

2.5. SAM 40 Dataset 

 
SAM 40 is a dataset derived from research developed by 

Ghosh et al. [22] at the BCI Lab GU laboratory (Guwahati, 

India). The dataset presents an EEG data collection from 40 

individuals monitored throughout 2019. The audience 

participating in the experiment consisted of students in the lab 

aged between 18 and 25 years. Data were recorded while 

subjects performed three stress-inducing tasks: color and word 

testing (Stroop), arithmetic question-solving, and symmetrical 

mirror image identification. According to Ghosh et al. [22], the 

SAM 40 was made publicly available in order to aid research 

in the field of Brain-Computer Interfaces (BCI) and contribute 

to pattern discovery and insights in stress identification. 

The device used in the experiment was the Emotiv EPOC 

Flex Gel Kit (Fig 2). The EEG was set up according to the 10-

20 electrode placement standard with a 32-channel recording 

pattern. The sampling frequency employed was 128 Hz. As 

shown in Fig 3, the electrodes were connected at the following 

positions: CZ, FZ, Fp1, F7, F3, FC1, C3, FC5, FT9, T7, CP5, 

CP1, P3, P7, PO9, O1, PZ, OZ, O2, PO10, P8, P4, CP2, CP6, 

T8, FT10, FC6, C4, FC2, F4, F8, and Fp2. 
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Figure 2 - Emotiv EPOC Flex Gel Kit. 

 

 

Figure 3 - EEG experiment set-up. 

 

According to Ghosh et al. [22], each individual 

underwent a sequence of activities for three times (three 

trials), the steps of which can be described as follows: 

 

1. The individual remained in a state of relaxation listening to 

relaxing music for 25 seconds; 

2. Instructions on performing the first task were presented to 

the individual for 10 seconds; 

3. The individual performed the Stroop test for 25 seconds; 

4. The individual relaxed for 5 seconds; 

5. Instructions on performing the second task were presented 

to the individual for 10 seconds; 

6. The individual performed the symmetrical mirror image 

identification test for 25 seconds; 

7. The individual relaxed for 5 seconds; 

8. Instructions on performing the third task were presented to 

the individual for 10 seconds; 

9. The individual performed arithmetic tests for 25 seconds; 

10. The individual rated each of the three tasks on a scale 

from 1 to 10, where 1 represents the lowest stress level and 10 

represents the highest stress level. 

 

The tasks were performed in the same order during the 

second and third attempts. However, they were presented with 

slightly different content from the one presented on the first 

attempt in order to avoid any distortion derived from 

repetition and prior knowledge of the content. 

The dataset went through a pre-processing stage before 

being made publicly available. According to Ghosh et al. [22], 

filtering techniques were employed to remove noise from the 

data that might have been caused by the influence exerted on 

the EEG signals by muscle and eye movements. 

 

 

3. METHODS 

 

3.1. Dataset Description 

 

The SAM 40 dataset was obtained from Ghosh et al. [22]. 

The original set had 12 files for each of the 40 experiment 

participants, totaling 480 files. Each file stored the record from 

the execution of one of the three tasks performed by each 

individual or the record of the moment when the individual 

remained in a state of relaxation. The 480 files were unified, 

generating a single file to be used in this research.  

The dataset generated gathered 1,536,000 samples with 32 

features, where each feature represents the record of brain 

activity obtained by each of the electrodes used in the 

experiment. The value stored in each feature is the 

measurement in microvolts of the electrical activity recorded 

by the electrode. In addition, the dataset has the label that 

stores the classification of each sample. The rating is the 

individual’s perception of the level of stress experienced while 

performing a particular task. The range of values for the 

classes varies from 0 to 10, where zero (0) indicates no stress 

and the range from 1 to 10 indicates the perception of the level 

of stress from the least intense (level 1) to the most intense 

(level 10). 

 

3.2. Preprocessing 

 

Data underwent an exploratory analysis, which pointed to 

lack of data inconsistency problems in the dataset, such as 

missing data, zeroed values, duplicate samples, or noisy data. 

It also pointed to the fact that the features presented previous 

values in similar scales, so the need to perform special 

treatments for scale normalization was not required. 

Certain features presented high correction among them. 

The features with multicollinearity were removed from the 

dataset in order to avoid instability problems during model 

training. Twelve features were removed from the dataset. The 

resulting dataset preserved the 20 features obtained by 

electrodes CZ, FZ, Fp1, F3, FC1, FC5, FT9, T7, CP5, P3, P7, 

PO9, PZ, O2, P4, CP6, FT10, FC6, F8, and Fp2. 
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Table 1 - Dataset unbalance analysis. 

Class Quantity of Samples % 

0 384,000 25.00 

1 60,800 3.96 

2 80,000 5.21 
3 185,600 12.08 

4 172,800 11.25 

5 246,400 16.04 
6 182,400 11.88 

7 102,400 6.67 

8 76,800 5.00 
9 32,000 2.08 

10 12,800 0.83 

Total 1,536,000 100.0 

 

Visual analysis showed that all the features presented a 

standardized normal distribution, and that the data were 

symmetrically distributed, indicating that the dataset was not 

affected by distortions in the data or by outliers. Upon these 

analyses, the dataset was considered ready for training the 

Machine Learning models. 

 

3.3. Model Training 

 

Eight Machine Learning models were selected to be 

trained with the SAM 40 dataset, aiming to compare the 

performance of different models and verify which of the 

models best adapts to the dataset. The selected models were: 

Naive Bayes, K-Nearest Neighbors, Logistic Regression, 

Decision Tree, Random Forest, Gradient Boosting, eXtreme 

Gradient Boosting and Multilayer Perceptron. The scikit-learn 

framework and XGBoost library implementations were used. 

The models were trained with cross-validation (3-Fold) and 

tuning strategies. Additionally, a data augmentation strategy 

(increase in the number of samples) was used to train the 

Multilayer Perceptron model. Table 2 presents the accuracy 

rates obtained from model training. 

 

Table 2 - Accuracy obtained from model training. 

Model 

Training 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Naive Bayes 11.2 11.2 
K-Nearest Neighbors 36.7 11.1 

Logistic Regression 9.9 9.3 

Decision Tree 100.0 10.3 
Random Forest 100.0 13.3 

Gradient Boosting 19.4 13.8 

eXtreme G. Boosting 48.2 14.5 
Multilayer Perceptron 98.87 98.99 

 

 

4. RESULTS AND DISCUSSION 

 

The “traditional” Machine Learning models showed poor 

performance. An underfitting problem was observed when 

training Naive Bayes, K-Nearest Neighbors, Logistic 

Regression, Gradient Boosting and eXtreme Gradient Boosting 

models. An overfitting problem was observed when training 

the Decision Tree and Random Forest models. A plausible 

explanation for the poor performance of these models is that 

the SAM 40 dataset presents complex relations among its 

features and its classes are not linearly separable, which made 

it difficult to learn and generalize the data for such models. 

The Multilayer Perceptron model obtained the best 

performance among all the models evaluated with an accuracy 

rate of 98.99% on the test set. A plausible explanation for the 

good performance of this model is the ability of neural 

networks to approximate complex functions and learn complex 

patterns from the data. An accuracy of 98.99% can be 

considered satisfactory in this scenario due to the complexity 

of the problem under study. 

Table 3 presents the detailed metrics (precision, recall, and 

F1-Score) of the Multilayer Perceptron training. High rates 

were obtained for these metrics, which points to a good 

management of the model over the dataset class predictions, 

and its performance was not affected by false positives or false 

negatives. 

 

Table 3 - Multilayer Perceptron training metrics. 

Class Precision Recall F1-Score 

0 0.99 0.99 0.99 
1 0.99 0.99 0.99 

2 0.99 0.99 0.99 

3 0.99 0.99 0.99 
4 0.99 0.99 0.99 

5 0.99 0.99 0.99 

6 0.99 0.99 0.99 
7 0.99 0.99 0.99 

8 0.99 0.99 0.99 

9 0.99 0.99 0.99 
10 0.99 0.99 0.99 

 

Fig 4 shows the Multilayer Perceptron architecture with 

which the best accuracy was reached. A 5-hidden layer 

architecture (with 100, 300, 500, 300 and 100 neurons) was 

used. Table 4 shows the hyperparameters setup used for 

training. 

 

 
Figure 4 - Multilayer Perceptron architecture. 

 

Table 4 - Hyperparameters setup for training. 
Parameter Value 

Optimizer Adam 

Activation function reLU 
Learning rate 0.001 

Epochs 300 
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5. CONCLUSIONS 
 

Machine Learning techniques are an excellent tool for 

analyzing and learning data from sensors. Its use in problem-

solving for the health area, such as stress level analysis, for 

example, expands the possibilities of providing technology 

whose application allows the discovery of insights about the 

problem at issue, and promotes the improvement of mental 

well-being as well as quality of life for individuals. 

The Multilayer Perceptron proved to be a suitable 

Machine Learning model to deal with the problem under study 

by reaching a satisfactory performance in learning and 

predicting the SAM 40 dataset information. As future 

research, it is proposed to explore the training of other neural 

network architectures with the SAM 40 dataset in order to try 

to improve the accuracy rate on test set or to achieve good 

results with the use of less complex architectures as well as 

lower computational costs. 
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