

### International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

### **Vehicle Number Plate Detection**

Basavaraja K $H^1$ , Dr. Geetha  $M^2$ 

<sup>1</sup>Student,4th Semester MCA, Department of MCA, BIET, Davanagere <sup>2</sup>Associate Professor, Department of MCA, BIET, Davanagere

**Abstract:** Vehicle Number Plate Detection An Integrated Machine Learning and OCR of the

This paper presents a robust Vehicle Number Plate Detection, leveraging advanced machine learning and Optical Character Recognition (OCR) technologies to automate vehicle registration analysis. The system combines the TensorFlow Object Detection API with a Single Shot Multibox Detector (SSD) model for high-precision license plate localization and EasyOCR for accurate alphanumeric character extraction. Designed as a Flask-based web application, the platform offers a user-friendly interface supporting multiple image formats (.PNG, .JPG, .JPEG) and delivers real-time results, with optimal performance for images of resolution ≥800×600 pixels. The solution integrates dual user roles: administrators manage user accounts and FAQs, while end-users access core functionalities like plate detection and state identification. By parsing extracted text against predefined state codes, the system enables rapid registration verification, reducing manual intervention and enhancing operational efficiency. Key advantages include scalability, platform-agnostic deployment (Windows, Linux, macOS), and high accuracy in diverse lighting and orientation conditions. Potential applications span law enforcement, toll automation, parking management, and security systems, offering transformative benefits for public and private sectors.

Keywords: License plate recognition, SSD model, EasyOCR, Flask web application, state

identification, automated vehicle tracking.

### I. INTRODUCTION

The increasing number of vehicles on roads worldwide has necessitated the development of intelligent transportation systems (ITS) to enhance traffic management, law enforcement, and public safety. One of the critical components of ITS is the ability to automatically identify vehicles through their number plates, which serve as unique identifiers. Manual identification of vehicle number plates is labor-intensive, time-consuming, and prone to errors, especially in high-traffic scenarios or large-scale monitoring environments. Therefore, the automation of number plate detection and recognition has become an essential technological advancement.

Automatic Number Plate Recognition (ANPR) systems automate the extraction and interpretation of vehicle registration details from images or video streams. These systems have broad applications including toll collection, parking management, traffic surveillance, vehicle tracking, and access control. Particularly in countries like India, vehicle number plates encode important information such as the state or region of registration, which is vital for regional law enforcement and vehicle verification processes. Accurate and timely identification of this information can significantly improve operational efficiency and security.

Despite the apparent benefits, developing a robust ANPR system presents several challenges. Variations in plate designs, fonts, colors, and formats across different states and vehicle categories introduce complexity in detection and recognition tasks. Environmental factors such as lighting



conditions, weather, occlusions, and camera angles further complicate the process. Additionally, image quality issues like low resolution, motion blur, and background noise can impede accurate character extraction. Traditional image processing techniques often struggle address these challenges to effectively, necessitating the use of advanced machine learning and deep learning methods.

Recent advancements in computer vision. particularly deep learning-based object detection models, have significantly improved the accuracy and robustness of number plate localization. Models such as Single Shot Multibox Detector (SSD), You Only Look Once (YOLO), and Faster RCNN have demonstrated superior performance in detecting objects in complex scenes with real-time Coupled capabilities. with powerful Optical Character Recognition (OCR) engines EasyOCR, these systems can accurately extract alphanumeric characters from detected plates, even under challenging conditions.

### II.LITERATURE REVIEW

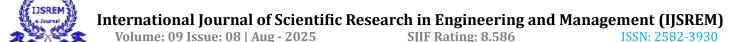
### [1] Author: Rahmatullah, Achintya Sharma

**Title:** This research proposes an end-to-end deep neural network that jointly performs license plate detection and character recognition in natural scene images through a single forward pass. Unlike conventional two-step methods (detection followed by recognition), the unified framework reduces error propagation from intermediate steps and accelerates processing. The model was evaluated on four datasets under varying conditions, demonstrating robust performance in real-world scenarios. Experimental results confirm the system's efficiency and accuracy, offering a streamlined solution for automated license plate analysis.[1]

### Dharmendrakumar Patel, Ajay [2] Author: Maraviya

**Title:** This paper presents an automated license plate recognition (ALPR) system for secure vehicle identification in restricted areas like military zones or government complexes. The system detects vehicles, captures images, isolates license plates via image segmentation, and applies optical character recognition (OCR) to extract text. Recognized data is crossreferenced with a database to retrieve owner details, registration location, and other information. Tested on real-world images, the framework demonstrates effective plate detection and character recognition, offering a practical solution for enhancing security in high-risk environments.[2]

### [3] Author: Dr. A R Aswatha, Anuj Banka, Kashil Naidu


**Title:** This paper explores the role of opensource tools like Python and OpenCV in advancing Automated License Plate

Recognition (ALPR) systems for intelligent transportation. It highlights how traditional ALPR setups, reliant on proprietary technology, are costly and hinder research scalability. By leveraging opensource frameworks—particularly Intel's OpenCV library—the authors propose a more accessible, affordable, and adaptable approach to developing computer vision solutions for ALPR. This shift democratizes innovation, enabling broader academic and practical advancements in vehicle identification systems.[3]

### [4] Author: Tanishq nirmal, supreet singh, Sandeep kumar

This paper introduces an advanced system that integrates Automatic Number Plate Recognition, real-time vehicle counting, and speed detection to enhance traffic management and road safety. Utilizing the Fast YOLO algorithm for accurate vehicle identification and the Euclidean distance formula for precise speed measurement, the system leverages custom datasets to optimize performance. The comprehensive approach ensures reliable detection and monitoring of vehicles, providing valuable data for effective traffic control and improved safety on the roads.[4] [5] Author: Manya tyagi, archana jain

Title: This paper presents a system for automatic number plate recognition (ANPR) in India, leveraging Raspberry Pi and video processing to extract license plate information from passing vehicles. Using OpenCV and various algorithms, the system converts video footage into images and applies optical character recognition (OCR) to



identify registration details. Designed for use at college entrances and secure areas, the solution can operate with standard CCTV or dedicated ANPR cameras. Its applications include toll collection, speed violation detection, vehicle monitoring, and access control, offering an efficient and adaptable approach to vehicle identification in hightraffic environments.[5]

### [6] Author: M. A. Jawale, P. William, A. B. Pawar, Nikhil Marriwala

This paper reviews and advances automatic license plate detection and recognition (ALPDR) within intelligent transportation systems, emphasizing its importance for traffic control, security, and automated payments. Leveraging recent progress in deep learning and IoT sensors, the authors propose a four-step ALPDR system: license plate extraction, image pre-processing, character segmentation, and character recognition. Novel approaches are introduced for the first three steps, while four deep learning models—CNN,

MobileNet, Inception V3, and ResNet 50— are evaluated for character recognition. The study analyzes current methodologies and highlights the significant improvements enabled by deep learning in license plate recognition, while noting ongoing challenges for achieving optimal accuracy.[6]

### [7]Author: Lubna, Naveed Mufti, and Syed Afaq Ali Shah

**Title:** This paper provides a comprehensive survey of current technologies and advancements in Automatic Number Plate Recognition (ANPR) systems, highlighting their critical role in smart vehicles and Intelligent Transportation Systems (ITS). It compares real-time tested and simulated algorithms, particularly those using computer vision and deep learning, and discusses the challenges posed by varying plate formats, environmental conditions, and hardware limitations. The survey also explores the integration of ANPR with emerging technologies like IoT, RFID, and GPS to enhance system performance. By analyzing extraction, segmentation, and recognition techniques, the paper offers valuable insights and guidelines for future research and development in the field of ANPR within ITS.[7]

# [8] Author: Bhawna Tiwari, Archana Sharma, Malti Gautam Singh, Bhawana Rathi

Title: This abstract describes automatic number plate recognition (ANPR) as a surveillance technology that uses optical character recognition to read vehicle license plates from images, utilizing either standard CCTV or specialized cameras. ANPR is valuable for traffic law enforcement, automated toll collection, and managing parking in high-security or reserved areas, as it can identify unauthorized vehicles and store both images and plate data. The system often employs infrared lighting or powerful flashes for round-the-clock operation. However, due to regional differences in plate formats, ANPR solutions are typically tailored to specific locations.[8]

### III. EXISTING SYSTEM

Number plate recognition in existing systems is often manual or with basic image processing techniques, which can be inaccurate or delayed. Number plate information can have to be manually read out using conventional methods, which is time-consuming and error-prone. Most of the existing systems are not scalable or automated, although some employ optical character recognition (OCR) for text reading. They may also fail to provide easyto-use interfaces for users and administrators, or may not integrate well into web applications. Performance of these systems may also be affected by issues such as poor image quality, various fonts, and various vehicle plate formats.

### III .PROPOSED SYSTEM

The objective of the proposed system is to leverage strong machine learning and OCR technologies to automate end-to-end state identification and vehicle number plate recognition. The EasyOCR model successfully reads text from the identified plates, and the system can accurately recognize license plates from images using the TensorFlow-based SSD (Single Shot Multibox Detector) model. Since it is automated, human intervention is reduced, and there is improved accuracy. The userfriendly design of the web application allows the users to easily enter images of cars, read license plates, and verify results. To enhance total system administration and

Volume: 09 Issue: 08 | Aug - 2025

SJIF Rating: 8.586

user experience, admin functionality is provided to manage user registrations and FAQs. Additionally, the system is crossplatform and can be accessed on any platform due to its ability to run across Windows, Linux, and Mac platforms. This proposed solution fills the weaknesses of existing systems and provides an improved accurate, efficient, and user-friendly technique for state detection and vehicle number plate recognition. The userfriendly design of the web application allows the users to easily enter images of cars, read license plates, and verify results.

### IV .METHODOLOGY

### **Proposed Methodology**

The development of the vehicle number plate detection and state identification system involves several key stages that integrate image processing, deep learning, OCR, and web technologies to automate and streamline vehicle identification from images.



**Fig 4.1. How model is working** The methodology is structured as follows:

### 4.1. Data Collection and Preprocessing:

A dataset of vehicle images is collected from various sources, including public datasets and real-world captures. Each image is resized to a uniform resolution (recommended minimum: 800×600 pixels) and preprocessed to ensure consistency. Preprocessing steps include grayscale conversion, noise reduction, and contrast normalization to enhance the visibility of number plates and prepare the images for reliable detection.

# **4.2.** Number Plate Localization Using Deep Learning:

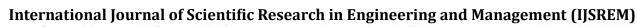
A pre-trained object detection model, such as SSD (Single Shot Multibox Detector) or YOLO, is employed to localize the number plate within the vehicle image. The model is fine-tuned on vehicle number plate datasets to improve detection accuracy across different plate formats, lighting conditions, and angles. The detected plate region is cropped from the original image for further analysis.

### 4.3 Character Segmentation:

The extracted plate region undergoes segmentation to isolate individual alphanumeric characters. Image processing techniques such as thresholding, contour detection, and morphological operations are applied to separate each character, ensuring clear boundaries for OCR.

### 4.4 Optical Character Recognition (OCR):

The segmented plate image is processed using an OCR engine, such as EasyOCR or Tesseract. The OCR model recognizes and extracts the sequence of alphanumeric characters from the plate, converting visual information into machine-readable text. The OCR system is optimized to handle diverse fonts, sizes, and plate conditions encountered in real-world scenarios.


### 4.5 State Identification:

The recognized license plate text is parsed to extract the regional code (e.g., the first two characters in Indian plates), which indicates the state or union territory of registration. This code is mapped to a predefined database of state codes, enabling automated and accurate state identification.

# 4.6 Result Presentation and User Interaction:

The final results, including the detected license plate number and the identified state, are displayed to the user through a

Flask-based web application. The application supports image uploads in multiple formats, provides real-time processing feedback, and offers additional functionalities such as user/admin management and FAQs for user assistance.





Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 25

### V.TECHNOLOGIES USED

### 5.1 Python

Python is a versatile, high-level programming language that supports a wide ecosystem of libraries and frameworks, making it a leading choice for data analysis, scientific computing, machine learning, and web development. Libraries such as Pandas and NumPy are especially popular in Python: Pandas provides powerful and flexible data structures like DataFrames for easy manipulation, cleaning, and analysis of structured data, while NumPy offers efficient operations on large, multidimensional arrays and matrices, serving as the computational backbone for many scientific and analytical tasks. Python's extensive standard library, clear syntax, and strong community support further enhance its appeal across a wide range of applications, from prototyping to production-level systems

### 5.2 Numpy

NumPy is a powerful Python library used for numerical and scientific computing, providing the core technology for creating and manipulating large, multi-dimensional arrays called ndarrays1. It supports a wide range of efficient array operations, including element-wise arithmetic (addition, subtraction, multiplication, division), aggregation functions (sum, min, max), reshaping, slicing, concatenation, and flattening, as well as advanced mathematical functions like trigonometric and logarithmic operations. These capabilities make NumPy essential for high-performance data analysis, preprocessing, and transformation tasks, enabling users to efficiently handle, modify, and analyze numerical data in Python.

### **5.3 NLTK**

NLTK (Natural Language Toolkit) is a comprehensive Python library designed for working with human language data, making it a foundational tool in the field of natural language processing (NLP). It provides a wide array of modules and resources for tasks such as tokenization, stemming, lemmatization, part-of-speech tagging, parsing, and semantic reasoning. NLTK also includes access to numerous linguistic corpora and lexical resources,

such as WordNet, which are invaluable for research and development in text analysis, sentiment analysis, and language modeling. Its userfriendly interface and extensive documentation make it a popular choice for both beginners and researchers aiming to preprocess, analyze, and understand textual data in Python.

#### 5.4 Scikit-learn

Scikit-learn is a powerful and widely used Python library for machine learning and data mining, offering a broad range of efficient tools for building, evaluating, and deploying predictive models. It provides simple and consistent APIs for tasks such classification, as regression, clustering, dimensionality reduction, model selection, and preprocessing, making it accessible to both beginners and experienced practitioners. Built on top of NumPy, SciPy, and matplotlib, scikit-learn integrates seamlessly with the broader scientific Python ecosystem, enabling users to quickly experiment with various algorithms, hyperparameters, and validate models using robust crossvalidation techniques. Its documentation, active community, and support for a variety of real-world datasets make scikit-learn a goto choice for developing and prototyping machine learning solutions in Python.

### 5.5 Word Cloud

Word Cloud is a popular Python library used for visualizing textual data by generating word clouds, which are graphical representations where the size of each word indicates its frequency or importance within a given text. This tool is widely utilized in text analysis and natural language processing projects to provide intuitive, at-a-glance insights into the most prominent terms in a dataset, making it easier to identify key topics, trends, or patterns. WordCloud supports extensive customization options, allowing users to adjust font styles, color schemes, shapes, and background images to create visually appealing and informative graphics. Its straightforward API and seamless integration with other Python libraries, such as matplotlib for displaying the generated word clouds, make it a



Volume: 09 Issue: 08 | Aug - 2025

SJIF Rating: 8.586 ISSN: 7

valuable resource for both exploratory data analysis and presentation purposes.

### VI. RESULTS



Fig:6.1 Vehicle Image

This snapshot shows the uploaded vehicle image with the number plate successfully detected using the SSD (Single Shot Multibox Detector) model. This detection step ensures only the relevant part of the image is passed to the OCR engine for better precision.



Fig:6.2:Result

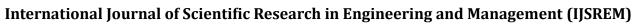
In this screenshot, the detected number plate text has been extracted using EasyOCR, and is clearly displayed on the interface. The system then identifies the state of registration based on the plate prefix — here. The results are shown in real-time within a clean web interface, confirming the integration of detection, recognition, and state mapping modules.

### VII. CONCLUSION

In this paper, we presented a comprehensive Vehicle Number Plate Detection and State Identification System that integrates advanced computer vision, deep learning, and OCR technologies within a userfriendly web application. By leveraging stateof-the-art object detection models such as SSD and powerful OCR engines like EasyOCR, the proposed system achieves robust and accurate localization and recognition of vehicle number plates across diverse real-world scenarios. The inclusion of a state identification module further enhances the system's utility, enabling automated mapping of license plate codes to their respective regions, which is valuable for particularly law enforcement, transportation management, and security applications.

The modular design, platform-agnostic deployment, and intuitive interface ensure that the solution is both scalable and accessible, catering to the needs of both administrators and end-users. Experimental results demonstrate the system's effectiveness in handling variations in plate formats, lighting conditions, and image quality, while maintaining real-time performance.

Overall, this work contributes a practical and efficient tool for automated vehicle identification and information management, with significant potential for integration into smart infrastructure, parking systems, and surveillance platforms. Future enhancements may include the incorporation of video stream processing, multilanguage plate recognition, and the use of edge computing on-device inference, further for extending the system's applicability and performance in dynamic environments.


### REFERENCE

1. Vehicle Number Plate Detection Using Machine Learning, Rahmatullah,

Achintya Sharma, Prof (Dr.) M Parthsarthi, 2023 | Volume 8, Issue 5 May 2023 | ISSN: 2456-4184 , Publisher -IJNRD.ORG

2. VEHICLE NUMBER PLATE DETECTION AND RECOGNITION USING DEEP LEARNING,

Dharmendrakumar Patel, Ajay Maraviya, Mohitrajsinh Parmar, Parin Vaghani 2022 IJCRT |



International Journal of Scient Volume: 09 Issue: 08 | Aug - 2025

2882, Publisher – IJCRT

SJIF Rating: 8.586

(Jul.-Aug

.2016), PP 10-16

www.iosrjournals.org

3. Automatic Number Plate Recognition System for Vehicle Identification Using OpticalCharacter Recognition, Prof. and Head DR. A R ASWATHA, Anuj Banka, KAashil Naidu, Shruti Shree, Rajasree Chowdhary, 2022 IJRAR July 2022,

Volume 10, Issue 2 February 2022 | ISSN: 2320-

Volume 9, Issue 3, www.ijrar.org (EISSN 2348-1269, P- ISSN 2349-5138), Publisher- IJRAR

- 4. Automatic number plate recognition, vehicle counter and speed detection using yolov8 tanishq nirmal, supreet singh, sandeep kumar, 2024 jetir may 2024, volume 11, issue 5 www.jetir.org (issn-2349-5162), publisher jetir
- 5. Automatic number plate recognition using image processing manya tyagi, archana jain , 2024 ijcspub | volume 14, issue 3 july 2024 | issn: 2250-1770, publisher ijcspub
- 6. "Implementation of number plate detection system for vehicle registration using IOT and recognition using CNN" by M.A. Jawale, P. William, A.B. Pawar, and
  Nikhil Marriwala is 10.1016/j.measen.2023.100761.

The publisher is Elsevier BV, and the paper was published in the journal *Measurement: Sensors* in 2023.

7. The article "Automatic Number Plate Recognition: A Detailed Survey of Relevant Algorithms" by Lubna, Naveed

Mufti, and Syed Afaq Ali Shah, edited by M. Hassaballah, was published in the journal *Applied Sciences* by MDPI (Multidisciplinary Digital Publishing Institute). The paper provides a comprehensive survey of algorithms related to automatic number plate recognition (ANPR).

8. Automatic Vehicle Number Plate

Recognition System using Matlab Bhawna Tiwari, Archana Sharma , Malti

Gautam Singh, Bhawana Rathi, IOSR Journal of Electronics and

Communication Engineering (IOSRJECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 4, Ver. II