
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                    Volume: 06 Issue: 05 | May - 2022                         Impact Factor: 7.185                                  ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                         DOI: 10.55041/IJSREM13236                                                     |        Page 1 

 

Vibration Analysis of Composite plate with Central rectangular cut-out 

using FEM 

Hrishita Barman1 

1Mechanical Engineering Department, Techno International NewTown 
 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract 
Plate structures are important engineering substructures, especi

ally where weight is a major consideration. Thin plate structure

s with arbitrary cutouts are unavoidable due to the high deman

d for laminates in a range of engineering applications. The exis

tence of cutouts will alter the frequency of free vibration. FEM

was used to investigate the natural frequencies of isotropic and 
composite laminated plates, as well as the effects of various pla

te characteristics with and without cut-out. A nine-node iso-

parametric element is used in the numerical analysis. The impa

ct of the number of layers, angle of fibre orientation, width to t

hickness ratio, modulus ratio, and cutout size on plate natural f

requencies is investigated. For various values, the nondimensio

nal fundamental frequency of vibration is displayed. 
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1.INTRODUCTION 
Plates are subjected to transverse load conditions, which result 

in transverse deflections. Bending and shear action work 

together to support transverse loads. The smallest side of a thin 
plate is greater than 20 times the thickness, and the 

displacements in the X, Y, and Z directions are minimal in 

comparison to the thickness. The middle surface of a thin plate 

remains unstrained during bending, and the normal to the 

middle surface before deformation remains normal to the same 

after deformation, with little rotating inertia. The original body 

or structure is modelled in FEM as an assemblage of pieces 

joined by a finite number of joints known as 'Nodes' or 'Nodal 

Points.' To create a solution for the overall body or structure, 

the attributes of the elements are formulated and integrated. 

Simple functions known as'shape functions' are chosen to 

approximate the variation in displacement within an element in 
terms of the displacement at the nodes of the element in the 

displacement formulation extensively used in finite element 

analysis. This is similar to the Rayleigh-Ritz functional 

approximation method, with the exception that the 

approximation to the field variable is done at the element level. 

The qualities of a composite material are usually derived from 

its constituents. Composite materials such as plywood and 

reinforced concrete have been utilised for a long time. Layers 

of diverse characteristics are bound together to operate as an 

essential portion of laminated composite materials. Particles of 

various materials are kept together in a matrix in particulate 
composite materials. Nowadays, fibre reinforced plastics are 

being increasingly used in aerospace applications due to their 

high specific strength, high specific stiffness and low density. 

In addition, they have good corrosion resistance. A designer 

can easily tailor these materials for different applications. In 
fibre reinforced plastic composites, first a thin lamina is 

prepared from fibres and matrix (sometimes a lamina may also 

be made of woven fabric). Lamina with different fibre 

orientations is bonded together to form an integral structural 

component, which is known as laminate. A lamina is 

considered to be homogeneous at microscopic level. Its stress-

strain behaviour is commonly referred to as linear elastic. 

Laminates can be symmetrical, anti-symmetrical, or 

asymmetric. Researchers have proposed a number of viable 

theories/formulations to address the shortcomings of composite 

structures and advanced structural materials compared to 
traditional materials. To fill the gap, a number of studies have 

looked at the static and vibration responses of laminated 

composite plates. 

2. Equation of Motion 
In this study, the finite element method has been used for 

calculating the free vibration of plates. The middle plane of the 
plate of the element is considered as the reference plane. The 
element used in this present work is nine-node iso-parametric 
finite element with 5 DOF per node (u, v, w). The independent 
field variables are u, v and w, where w is the transverse 
displacement while u and v are the corresponding in-plane 

displacements and are the total rotations in bending. The 
interpolation functions used for the representation of element 
geometry. The displacement field at a point within the element 
in terms of nodal variables are 
u = ∑ 𝑁𝑟𝑢𝑟

9
𝑟=1  , v = ∑ 𝑁𝑟𝑣𝑟

9
𝑟=1 , w = ∑ 𝑁𝑟𝑤𝑟

9
𝑟=1 ,  

𝜃x = ∑ 𝑁𝑟𝜃𝑥𝑟
9
𝑟=1 , 𝜃y = ∑ 𝑁𝑟𝜃𝑦𝑟

9
𝑟=1  

The relationship between strains and stresses are derived from 
Hooke’s law by, [σ]=[D]{ε} 

The generalized stress vector {σ} in the above equation is, 

{σ}T = [𝑁𝑥  𝑁𝑦 𝑁𝑧 𝑀𝑥  𝑀𝑦 𝑀𝑥𝑦 𝑄𝑥  𝑄𝑦] 

While the generalized strain vector {ε} may be written in terms 

of displacement field as,  

{ε}T = {
𝜕𝑢

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
 (

𝜕𝑢

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑥
) −

𝜕𝜃𝑥

𝜕𝑥
  −

𝜕𝜃𝑦

𝜕𝑦
− (

𝜕𝜃𝑥

𝜕𝑦
+

𝜕𝜃𝑦

𝜕𝑥
) (

𝜕𝑤

𝜕𝑥
−

𝜃𝑥) (
𝜕𝑤

𝜕𝑦
− 𝜃𝑦)} 

Now the rigidity matrix [D] is written as, 

[D] = 

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

0 0 0
0 0 0

0 0 0
0 0 0

0 0
0 0
0 0
0 0
0 0
0 0

𝐴55 𝐴54

𝐴45 𝐴44]
 
 
 
 
 
 
 

 

where, 
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𝐴𝑖𝑗 = ∑(𝑄𝑖𝑗)𝑘(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

 

𝐵𝑖𝑗 = 
1

2
∑(𝑄𝑖𝑗)𝑘(ℎ2

𝑘 − ℎ𝑘−1
2 )

𝑛

𝑘=1

 

𝐷𝑖𝑗 = 
1

3
∑(𝑄𝑖𝑗)𝑘(ℎ3

𝑘 − ℎ3
𝑘−1)

𝑛

𝑘=1

 

The generalized displacement within the element in terms of 

nodal displacement can be expressed as, 

{ε}= [B]{d} 

The displacement gradient can be related to the nodal 

displacement in the FEM as, 

{𝜺} =  ∑[𝑩]

𝟗

𝒓=𝟏

{𝜹} 

Where, [B] is the strain matrix containing interpolation 

functions and their derivatives and {δ} is the nodal 

displacement vector having order 45x45. 

Once the matrices [B] and [D] are obtained, the stiffness matrix 

of the plate element [K] can be easily derived by the virtual 

work method and it may be expressed as,  

[𝐾]𝑒 = ∫ ∫ [𝐵]𝑇[𝐷][𝐵]𝑑𝑦𝑑𝑥

+1

−1

+1

−1

 

The above expression in local coordinate is written as, 

[𝐾]𝑒 = ∫ ∫ [𝐵]𝑇[𝐷][𝐵]|𝐽|𝑑𝜂𝑑𝜉

+1

−1

+1

−1

 

The integration has been carried out numerically by following 

Gauss quadrature technique. In the similar manner, the 

consistent mass matrix of an element can be derived  

and it may be expressed as, 

[𝑀] =  𝜌ℎ ∫ ∫ ([𝑁𝑢]𝑇 [𝑁𝑢] + [𝑁𝑣]
𝑇 [𝑁𝑣] + [𝑁𝑤]𝑇 [𝑁𝑤]

+1

−1

+1

−1

+
ℎ2

12
[𝑁𝜃𝑥

]
𝑇
 [𝑁𝜃𝑥

] +
ℎ2

12
[𝑁𝜃𝑦

]
𝑇

 [𝑁𝜃𝑦
]) 

The element stiffness matrix and mass matrix having an order 

of forty five are evaluated for all the elements and they are 

assembled together to form the overall stiffness matrix [K0] and 

mass matrix [M0]. Once [K0] and [M0] are obtained the 

equations of motion of the plate may be expressed as, 

[K0] = 𝜔2[𝑀0] 
After incorporating the boundary conditions in the above 

equation it is solved by the simultaneous iterative technique to 

get frequency ω for first six modes. 

3. BOUNDARY CONDITION 

The purpose of boundary condition in any solution is to avoid 

the rigid body motion and to get the responses by reducing the 

number of field variables. In order to solve the governing 

equations as discussed in the above-mentioned line are solved 

using different support conditions. The supports conditions are  

discussed mathematically and a schematic presentation of a 

plate have been given in Figure 1. 

 
Figure 1: Schematic presentation of plate 

Clamped on all edges:  

u= v = w = = 0, at x=0, a and y =0, b.  

Simply supported edges 

v = w = = 0, at x = 0, a; 

u = w = = 0, at y = 0, b. 

 

4. RESULTS AND DISCUSSIONS 

In this work, the frequencies of isotropic and composite plate 

with cut-out are analyzed under different situations, which 

include different boundary condition, thickness ratio (h/a), cut-

out ratio (c/a). 

 
Figure 2: Plate geometry with cut-out. 

 

A. Isotropic plate with cut-out. 

A square isotropic plate with a central rectangular cut-out is 

considered. The plate has thickness ratio 0.01, Poisson’s ratio 

(ʋ) 0.3, Young’s modulus 10.92x106 N/m2, and shear modulus 

4.2x106 N/m2. Non-dimensional frequency parameter is  

𝜆 =  𝜔𝑎2√
𝜌ℎ

𝐷⁄  . 

Table -1: Comparison of frequency parameter 𝜆 = 𝜔𝑎2√𝜌ℎ
𝐷⁄  

for a simply supported square plate with central cut-out 

(a/b=1.0, ʋ=0.3). 

Cut-out 

ratio(c/a) 

Mode 

no. 

Proposed results 

1 19.421 

2 49.142 

3 49.142 

4 78.109 

1 19.098 

2 47.488 

3 47.488 

4 76.221 

1 19.259 

2 43.525 

3 43.525 

4 73.544 

1 20.707 

2 40.719 

3 40.719 
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4 71.165 

1 23.223 

2 39.646 

3 39.646 

4 70.172 

 

Here the effect of cut-out in an isotropic plate is given. From 
table 1 it is cleared that the cut-out ratio plays an important role 
in frequency. Here the cut-out ratio varies from 0.1 to 0.5. The 
first mode frequency is increases with the increase of cut-out 
ratio. But the second, third and fourth mode frequencies are 
decrease with increase the cut-out ratio. 

B. Isotropic plate with various cut-out ratio (c/a) and 
thickness ratio (h/a). 

The problem considers fundamental frequency of a square plate 
(a/b=1.0) of isotropic material (ʋ=0.3) having a central square 
cut-out (c*c) of various sizes for different thickness ratios (h/a). 
All edges are simply supported and the non-dimensional 

frequency is calculated as 𝜆 = 𝜔𝑎2√𝜌ℎ
𝐷⁄ . 

Table-2:. Frequency parameter 𝜆 = 𝜔𝑎2√𝜌ℎ
𝐷⁄  of 

isotropic square plate (a/b=1.0) with various cut-out ratio (c/a) 
and different thickness ratio (h/a). 

Thickness  

ratio (h/a) 

 Cut-out ratio (c/a) 

0.2 0.4 0.5 0.6 0.8 

0.2 16.61 18.10 20.89 25.36 43.96 

0.1 18.037 20.26 21.97 26.63 50.36 

0.001 19.06 20.03 21.86 28.46 57.21 

 

Here the result gives the changes of frequencies with the change 
the thickness ratio and cut-out ratio. For a fixed cut-out ratio the 
frequency is increased with decrease the thickness ratio. And 
when the thickness ratio is fixed the frequency increases with 
increasing the cut-out ratio. 

C.  Composite plate with different cut-out ratio (c/a): 

A square laminate plate (a*a), (0/90) and (h/a=0.01) with 
different size of cut-out considered. The results have been 

compared for frequency parameter of 𝜆 =
𝜔𝑎2

ℎ
√

𝜌
𝐸2

⁄  show 

good agreement results as shown in table 3. 

Material properties: E1=25x1010 N/m2, E2=1x1010 N/m2,              
G12=G13=0.5x1010N/m2, G23=0.2x1010 N/m2, ʋ12=ʋ23=0.25, 
ρ=1x1010 Kg/m2 

Table.3. Frequency parameter 𝜆 =
𝜔𝑎2

ℎ
√

𝜌
𝐸2

⁄  of simply 

supported, cross-ply (0/90), square laminate plate having 
rectangular cut-out. 

Cutout 
size 

 Mode number 

1 2 3 4 5 6 

0.2a*0.2a 9.3 26.1 26.1 39.0 55.6 62.5 

0.4a*0.4a 9.2 20.7 20.7 36.3 45.3 63.2 

0.6a*0.6a 11.2 18.8 18.8 33.4 35.0 54.3 

0.4a*0.2a 8.9 21.5 25.3 37.9 53.3 63.7 

0.8a*0.4a 9.8 11.9 27.9 31.7 51.9 61.9 

0.6a*0.2a 8.7 16.0 25.9 35.4 52.8 61.9 

 

In this table 3 the effect of cut-out ratio in a composite cross-ply 
plate is given. The cut-out size for the first, second and third are 
square and the rests are rectangular. For the square cut-out, the 
frequencies are increase for the first mode for increase the cut-
out size. But the second, third, fourth and fifth mode frequencies 
are decrease by increasing the cut-out ratio. For the rectangular 
cut-out the frequency is increase for the increase of the cut-out 
size. 

D. Effect of material orthotropic property: 

Three values of E1/E2 (i.e. the ratio of Young’s modulus along 
and perpendicular to the fiber direction) are selected while other 
material properties are given below to study the effect of 
material orthotropic property on natural frequencies of the 
laminate for varying size of the cut-out.  

Material properties: E1/E2=13 to 40, G12=G13=0.5x1010 N/m2, 
G23=0.33x1010 N/m2, ʋ12=0.35, ρ=1500kg/m3. The non-

dimensional frequency parameter is 𝜆 =
𝜔𝑎2

ℎ
√

𝜌
𝐸2

⁄ . 

Table.4. Frequency parameter 𝜆 =
𝜔𝑎2

ℎ
√

𝜌
𝐸2

⁄  of clamped 

edges, cross-ply (0/90/0/90), square laminate plate having 
different E1/E2 and varying c/a (c/b=0.4). 

E1/E2 c/a Mode(1) Mode(2) Mode(3) Mode(4) 

0.1 21.1 29.9 39.4 51.1 

0.3 22.7 31.2 38.3 50.6 

0.5 27.3 35.2 38.1 50.4 

0.1 24.3 33.4 44.1 56.9 

0.3 26.1 35.1 37.1 53.4 

0.5 31.3 39.8 42.9 56.2 

0.1 30.2 39.4 51.8 66.1 

0.3 32.3 42.0 50.7 65.6 

0.5 38.3 47.6 51.0 65.5 

 

From table 4 the effect of modulus ratio with cut-out ratio on 
frequency is studied. Here the modulus ratio changes from 13 to 
40 and the cut-out is a rectangular cut-out with the size changes 
along x-axis from 0.1 to 0.5. The effect of cut-out size on 
frequency having varying modulus ratio is focused on the above 
discussions. Here it is clear that the frequencies are increase with 
increase of modulus ratio for a same cut-out ratio. 
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4. CONCLUSIONS 

 
Because cut-outs are frequently utilised as access ports for 

mechanical and electrical systems, it is critical to anticipate the 

natural frequencies of laminate composite plates with cut-outs 

in the centre. In the presence of cut-outs, unwanted vibrations 

may induce unexpected failures owing to resonance. Because 

the plate has less mass, the natural frequencies increase when 
the cut-out size is increased, as shown in the above results. For 

isotropic and laminated plates, the non-dimensional 

fundamental frequency of vibration increases as the width to 

thickness ratio decreases. The fundamental frequency increases 

as the modulus ratio increases, reaching the maximum for the 

fourth mode. 
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