
 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND MANAGEMENT STUDIES (IRJEMS)

 VOLUME: 03 ISSUE: 05 | MAY -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 1

Video Stabilization using OpenCV in Python

Prof. Milind Rane
Department of Electronics Engineering,

Vishwakarma Institute of Technology, Pune

Prajwal Langde

Department of Electronics Engineering,
Vishwakarma Institute of Technology, Pune

Abstract - video stabilization is a technique to compensate

for unwanted camera motion and produce a video that

looks relatively stable. In this paper, an approach for video

stabilization is proposed which works by estimating a

trajectory built by calculating motion between continuous

frames using the Shi-Tomasi Corner Detection and

Optical Flow algorithms for the entire length of the video.

The trajectory is then smoothed using a moving average to

give a stabilized output. A smoothing radius is defined,
which determines the smoothness of the resulting video.

Automatically deciding this parameter’s value is also

discussed. The results of stabilization of the proposed

approach are observed to be comparable with the state of

the art YouTube stabilization.

Keywords—shaky video, point feature matching,

stabilization.

I. INTRODUCTION

Video stabilization refers to a family of methods used
to reduce the effect of camera motion on the final
video. The motion of the camera would be a
translation (i.e. movement in the x, y, and z-direction)
or rotation (yaw, pitch, and roll). Most of the
approaches discussed here witness a significant
diff erence in performance on videos with an object of
interest and ones without, with the latter facing a dip.
In this paper, an approach based on [10] is investigated
whose performance does not change for videos with
objects of interest or ones without. Video stabilization
generally consists of motion estimation where we use
feature tracking method Harris-Stephens corner
detection to identify the camera motion path, next
process is motion smoothing which is used to remove
undesired camera motions by using an appropriate
motion model such as homograph camera motion path
is smoothened. When performing video stabilization
on the respective frames, due motion correction the
frames may go out of bounds which creates black
regions near the edges of the frames to avoid we go for
cropping method. The general block diagram of video
stabilization is shown.

II. DIFFERENT APPROACHES TO VIDEO

STABILIZATION

Video Stabilization approaches include mechanical,
optical and digital stabilization methods. These are
discussed briefly below:

1) Mechanical Video Stabilization: Mechanical
image stabilization systems use the motion detected by
special sensors like gyros and accelerometers to move
the image sensor to compensate for the motion of the
camera.

2) Optical Video Stabilization: In this method,
instead of moving the entire camera, stabilization is
achieved by moving parts of the lens. This method
employs a moveable lens assembly that variably
adjusts the path length of light as it travels through the
camera’s lens system.

3) Digital Video Stabilization: This method does not
require special sensors for estimating camera motion.
There are three main steps — 1) motion estimation 2)
motion smoothing, and 3) image composition. The
transformation parameters between two consecutive
frames are derived in the first stage. The second stage
filters out unwanted motion and in the last stage the
stabilized video is reconstructed.

We will learn a fast and robust implementation of a
digital video stabilization algorithm in this post. It is
based on a two-dimensional motion model where we
apply a Euclidean (a.k.a Similarity)

transformation incorporating translation, rotation,
and scaling.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND MANAGEMENT STUDIES (IRJEMS)

 VOLUME: 03 ISSUE: 05 | MAY -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 2

III. VIDEO STABILIZATION USING POINT FEATURE

MATCHING

This method involves tracking a few feature points
between two consecutive frames. The tracked features
allow us to estimate the motion between frames and
compensate for it.
The flowchart below shows the basic steps.

Step 1

This graph shows the dx, dy transformation for
previous to current frame, at each frame. Da (angle)
has been omitted because it is not particularly
interesting for this video since there is very little
rotation. It can be seen it is quite a bumpy graph,
which correlates with our observation of the video
being shaky, though still orders of magnitude better
than Hollywood’s shaky cam effect.

Step 2

The trajectory is a rather abstract quantity that does not
necessarily have a direct relationship to the motion
induced by the camera. For a simple panning scene
with static objects, it probably has a direct relationship
with the absolute position of the image but for scenes
with a forward moving camera, eg. on a car, then it’s
hard to see any.

The important thing is that the trajectory can be
smoothed, even if it does not have any physical
interpretation.

Step 3

This is the most crucial part of the algorithm. We will
iterate over all the frames, and find the motion

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND MANAGEMENT STUDIES (IRJEMS)

 VOLUME: 03 ISSUE: 05 | MAY -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 3

between the current frame and the previous frame. It is
not necessary to know the motion of each and every
pixel. The Euclidean motion model requires that we
know the motion of only 2 points in the two frames.
However, in practice, it is a good idea to find the
motion of 50-100 points, and then use them to robustly
estimate the motion model.

3.1 Good Features to Track

The question now is what points should we choose for
tracking. Keep in mind that tracking algorithms use a
small patch around a point to track it. Such tracking
algorithms suffer from the aperture problem as
explained in the video below

So, smooth regions are bad for tracking and textured
regions with lots of corners are good. Fortunately,
OpenCV has a fast feature detector that detects
features that are ideal for tracking. It is
called goodFeaturesToTrack.

3.2 Lucas-Kanade Optical Flow

Once we have found good features in the previous
frame, we can track them in the next frame using an
algorithm called Lucas-Kanade Optical Flow named
after the inventors of the algorithm.
It is implemented using the
function calcOpticalFlowPyrLK in OpenCV. In the
name calcOpticalFlowPyrLK, LK stands for Lucas-
Kanade, and Pyr stands for the pyramid. An image
pyramid in computer vision is used to process an
image at different scales (resolutions).
calcOpticalFlowPyrLK may not be able to calculate
the motion of all the points because of a variety of
reasons. For example, another object in the next frame
could occlude the feature point in the current frame.
Fortunately, as you will see in the code below,
the status flag in calcOpticalFlowPyrLK can be used
to filter out these values.

3.3 Estimate Motion

To recap, in step 3.1, we found good features to track
in the previous frame. In step 3.2, we used optical flow
to track the features. In other words, we found the
location of the features in the current frame, and we
already knew the location of the features in the
previous frame. So we can use these two sets of points

to find the rigid (Euclidean) transformation that maps
the previous frame to the current frame. This is done
using the function estimateRigidTransform.
Once we have estimated the motion, we can
decompose it into x and y translation and rotation
(angle). We store these values in an array so we can
change them smoothly.
The code below goes over steps 3.1 to 3.3. Make sure
to read the comments in the code to follow along.

Step 4

In the previous step, we estimated the motion between
the frames and stored them in an array. We now need
to find the trajectory of motion by cumulatively adding
the differential motion estimated in the previous step.

Step 4.1 : Calculate trajectory

In this step, we will add up the motion between the
frames to calculate the trajectory. Our ultimate goal is
to smooth out this trajectory.

Step 4.2 : Calculate smooth trajectory

In the previous step, we calculated the trajectory of
motion. Therefore, we have three curves that show
how the motion (x, y, and angle) changes over time.
In this step, we will show how to smooth these three
curves.
The easiest way to smooth any curve is to use
a moving average filter. As the name suggests, a
moving average filter replaces the value of a function
at the point by the average of its neighbours defined by
a window. Let us look at an example.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND MANAGEMENT STUDIES (IRJEMS)

 VOLUME: 03 ISSUE: 05 | MAY -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 4

Let’s say we have stored a curve in an array , so the

points on the curve are … . Let be the
smooth curve we obtain by filtering with a moving
average filter of width 5.
The element of this curve is calculated using

As you can see, the values of the smooth curve are the
values of the noisy curve averaged over a small
window. The figure below shows an example of the
noisy curve on the left smoothed using a box filter of
size 5 on the right.

Step 5
We are almost done. All we need to do now is to loop
over the frames and apply the transforms we just
calculated.

If we have a motion specified as , the
corresponding transformation matrix is given by.

IV. APPLICATIONS OF VIDEO STABILIZATION

The need for video stabilization spans many domains.
It is extremely important in consumer and
professional videography. Therefore, many different
mechanical, optical, and algorithmic solutions exist.
Even in still image photography, stabilization can help
take handheld pictures with long exposure times.
In medical diagnostic applications like endoscopy and
colonoscopy, videos need to be stabilized to determine
the exact location and width of the problem.
Similarly, in military applications, videos captured by
aerial vehicles on a reconnaissance flight need to be
stabilized for localization, navigation, target tracking,
etc. The same applies to robotic applications.

V. CONCLUSIONS

Pros

1. This method provides good stability against
low-frequency motion (slower vibrations).

2. This method has low memory consumption
thereby ideal for embedded devices (like

Raspberry Pi).

3. This method is good against zooming (scaling)
jitter in the video.

Cons

1. This method performs poorly against high-
frequency perturbations.

2. If there is a heavy motion blur, feature
tracking will fail and the results would not be
optimal.

3. This method is also not good with Rolling
Shutter distortion.

VI. REFERENCES

[1] Battiato, S., Gallo, G., Puglisi, G., Scellato, S.: Sift
features tracking for video
stabilization. In: Image Analysis and Processing, 2007.
ICIAP 2007. 14th Interna-
tional Conference on. pp. 825–830. IEEE (2007)
[2] Grundmann, M., Kwatra, V., Essa, I.: Auto-directed
video stabilization with robust
l1 optimal camera paths. In: Computer Vision and Pattern
Recognition (CVPR),
2011 IEEE Conference on. pp. 225–232. IEEE (2011)
[3] Horn, B.K., Schunck, B.G.: Determining optical flow.
Artificial intelligence 17(1-3),
185–203 (1981)
[4] Jianbo, S., Carlo, T.: Good features to track. In:
Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
Computer Society Confer-
ence on. pp. 593–600. IEEE (1994)
[5] Lee, K.Y., Chuang, Y.Y., Chen, B.Y., Ouhyoung, M.:
Video stabilization using
robust feature trajectories. In: Computer Vision, 2009 IEEE
12th International
Conference on. pp. 1397–1404. IEEE (2009)
[6]
https://www.researchgate.net/publication/320732904_Video
_Stabilization_Using_Sliding_Frame_Window
[7] http://ijirae.com/volumes/Vol3/iss4/30.APAE10102.pdf
[8] https://www.learnopencv.com/video-stabilization-using-
point-feature-matching-in-opencv/

https://www.researchgate.net/publication/320732904_Video_Stabilization_Using_Sliding_Frame_Window
https://www.researchgate.net/publication/320732904_Video_Stabilization_Using_Sliding_Frame_Window
http://ijirae.com/volumes/Vol3/iss4/30.APAE10102.pdf
https://www.learnopencv.com/video-stabilization-using-point-feature-matching-in-opencv/
https://www.learnopencv.com/video-stabilization-using-point-feature-matching-in-opencv/

	I. Introduction
	II. DIFFERENT APPROACHES TO VIDEO STABILIZATION
	III. VIDEO STABILIZATION USING POINT FEATURE MATCHING
	Step 3
	3.1 Good Features to Track
	3.2 Lucas-Kanade Optical Flow
	3.3 Estimate Motion

	Step 4
	Step 4.1 : Calculate trajectory
	Step 4.2 : Calculate smooth trajectory

	Step 5

	IV. APPLICATIONS OF VIDEO STABILIZATION
	V. CONCLUSIONS
	VI. References

