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Abstract - Lane detection is one of the most fundamental 

components of intelligent transportation systems, 

particularly in autonomous vehicles and modern 

Advanced Driver Assistance Systems (ADAS). Accurate 

lane perception enables safe navigation, stable lane 

keeping, and informed decision-making. Traditional lane 

detection approaches—such as Canny edge detection, 

Hough Transform, and color-based thresholding—show 

reasonable performance in controlled environments but 

fail under challenging real-world conditions involving 

low visibility, shadows, faded lane markings, and abrupt 

illumination changes. With the rise of deep learning, 

particularly Convolutional Neural Networks (CNNs), 

models have gained the ability to learn robust lane 

features directly from data. However, real-world driving 

requires more than lane detection; it also demands an 

understanding of drivable areas and the presence of 

objects such as vehicles or pedestrians. 

This paper presents a comprehensive review of classical 

and modern lane detection techniques, with a focus on 

multi-task deep learning architectures, such as YOLOP 

(You Only Look Once for Panoptic Driving Perception). 

We also implement YOLOP on real-world Indian road 

videos and enhance its performance on nighttime scenes 

using custom brightness, contrast, and gamma 

preprocessing. The integration of night enhancement 

improved lane IoU from 0.72 to 0.84 and pixel accuracy 

from 0.88 to 0.93. The review highlights major 

advancements, limitations, research gaps, and future 

opportunities in machine-learning-based lane detection. 

The findings emphasize that multi-task learning, domain 

adaptation, and lightweight models are essential steps 

toward practical and reliable autonomous vehicle 

perception systems. 

Keywords— Lane detection, YOLOP, multitask 

learning, CNN, semantic segmentation, object detection, 

night enhancement. 

1. INTRODUCTION 

     In the age of rapidly evolving smart transportation 

technologies, autonomous vehicles (AVs) and Advanced 

Driver Assistance Systems (ADAS) are revolutionizing 

how society approaches road safety, mobility, and traffic 

management. These systems are gradually shifting the 

responsibility of driving from humans to intelligent  

    

    machines capable of sensing, interpreting, and 

responding to complex real-world environments. For such 

systems to operate safely and effectively, one fundamental 

capability stands above all others — the ability of a vehicle 

to accurately “see” and understand the road. At the heart of 

this perception lies lane detection, a task so central that 

without it, even the most advanced autonomous system 

would fail to maintain stable navigation or make safe 

decisions. 

Lane detection research started long before modern AI-

driven perception systems became common. Early methods 

mainly used traditional image-processing techniques. For 

example, the Canny edge detector identified sharp changes 

in pixel intensity that corresponded to lane boundaries. The 

Hough Transform was another method used to find linear 

or parametric structures within the detected edges. These 

methods were computationally light, straightforward, and 

easy to implement. This made them suitable for the early 

phases of intelligent vehicle development. However, 

despite their simplicity and early potential, traditional 

methods did not have the flexibility needed to perform 

reliably in real-world driving conditions. 

Real-world road environments are unpredictable and 

visually inconsistent. Lane markings can be faded, worn 

out, partially blocked by vehicles, distorted due to road 

curves, covered in dirt or debris, or completely missing in 

poorly maintained areas. Lighting conditions also change 

dramatically throughout the day, from bright sunlight and 

glare to long shadows, and into night-time darkness where 

lane visibility greatly decreases. Weather makes things 

even more challenging by adding rain streaks, fog, snow, 

reflections, and other visual disturbances. In these 

situations, traditional edge-based or colour-thresholding 

methods often fail. They can detect false edges, misclassify 

road artifacts, or lose lane cues completely. These problems 

show the need for perception systems that can learn and 

generalize beyond limited, fixed rules.  

This realization led to the rise of machine learning and, 

eventually, deep learning-based lane detection. Instead of 

manually designing filters or thresholds, machine learning 

allowed systems to learn meaningful lane patterns directly 

from data. The introduction of Convolutional Neural 
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Networks (CNNs) changed the field by allowing 

hierarchical feature extraction, from simple edges in 

shallow layers to complex lane textures, shapes, and 

contextual information in deeper layers. CNN-based 

models quickly surpassed traditional methods in 

robustness and accuracy, especially under challenging 

conditions like shadows, partial occlusions, worn-out 

markings, or curved road segments. More advanced 

architectures, such as Spatial CNNs (SCNNs), improved 

lane continuity understanding by letting information 

move across image rows and columns, thus enhancing 

detection in curves and visually cluttered scenes.  

As autonomous systems developed, researchers realized 

that detecting lane lines alone did not provide a complete 

understanding of the road. Vehicles also needed to 

recognize drivable areas, understand road boundaries, 

detect other vehicles, and interpret changing traffic 

situations. This realization led to the creation of multi-

task learning frameworks that could handle several 

perception tasks within one design. Among these, 

YOLOP (You Only Look Once for Panoptic Driving 

Perception) is a prominent model. YOLOP combines 

object detection, lane detection, and drivable area 

segmentation in a single encoder-decoder network. By 

sharing feature representations across tasks, YOLOP 

lowers computational costs, improves contextual 

understanding, and achieves real-time performance, 

making it a strong option for practical ADAS and AV 

applications. 

Despite these advancements, several challenges remain. 

Autonomous vehicles must operate consistently in 

changing lighting conditions, various weather patterns, 

occlusions, geographical differences, and hardware 

limits. Night-time driving is particularly challenging 

because of low light, headlight glare, and less contrast 

between lanes and the surrounding area. Thick shadows, 

rain, fog, and reflections add extra visual noise that can 

confuse even the best neural models. Using embedded 

automotive hardware also demands efficient models that 

work in real-time with minimal delay. In addition, dataset 

limitations and differences across regions create obstacles 

for model generalization. 

This review paper aims to provide a clear and detailed 

understanding of how lane detection systems have 

advanced. It covers the shift from early, rule-based image 

processing methods to modern deep learning models and 

multi-task perception systems. The paper looks into the 

theories behind each approach, highlighting their 

strengths and weaknesses. It also includes a practical 

implementation of YOLOP, which has been specifically 

improved for better performance at night. These proposed 

changes tackle one of the biggest challenges in self-

driving: ensuring reliable lane detection in low-light 

conditions. 

The motivation for this study comes from the urgent need 

to close the gap between research-level lane detection 

models and their effective use in real-world situations.  

This work has four main goals:   

1. To explore how deep learning and multi-task 

architectures improve lane detection compared to 

traditional methods.   

2. To evaluate YOLOP’s performance in tough real-world 

situations, including night-time and low-visibility 

conditions.   

3. To identify ongoing issues in lane detection research 

related to occlusions, lighting changes, dataset biases, and 

computational limits.   

4. To implement and analyze night-time enhancement 

techniques focused on improving lane visibility and safety 

during low-light driving.   

By looking at the evolution, challenges, and opportunities 

in lane detection research, this paper aims to help develop 

safer, smarter, and more reliable vision-based driving 

systems. As the transportation industry approaches true 

autonomous mobility, strong and dependable lane detection 

remains essential for ensuring safety and trust in the next 

generation of intelligent vehicles. 

2. LITERATURE REVIEW 

The development of lane detection has changed 

significantly over the last thirty years. Early research in this 

area mainly focused on traditional computer vision 

methods that relied heavily on manual features and fixed 

rules. One of the first foundations for lane detection was 

based on edge techniques like the Canny edge detector. 

This method aimed to find lane boundaries by highlighting 

strong intensity changes. Typically, these techniques were 

paired with mathematical tools like the Hough Transform 

to identify straight or slightly curved lane shapes. While 

these methods worked reasonably well in controlled 

settings and on well-marked highways, their effectiveness 

in real-world situations quickly faced challenges. 

Variations in lighting, road surfaces, lane paint quality, 

weather conditions, and shadows created inconsistencies 

that rigid algorithms could not handle well. Consequently, 

although these traditional methods are historically 

important, they struggled to perform reliably in 

unpredictable environments. 

A major shift happened with the rise of machine learning, 

which brought data-driven decision-making to lane 

detection. Instead of using manually designed filters, 

machine learning tried to classify pixels, edges, or patches 

based on features learned from labelled  datasets. 

Techniques like Support Vector Machines (SVMs), 
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Random Forests, and k-Nearest Neighbour (KNN) were 

used for lane-marking detection tasks, often relying on 

handcrafted descriptors such as Histogram of Oriented 

Gradients (HOG) or colour histograms. Although this 

change showed progress, the success of these models was 

still limited by the quality and effectiveness of the manual 

features. Handcrafted features could not adapt well and 

failed to capture the complex variations in road images, 

especially in challenging conditions like night driving or 

heavy rain.  

The real change in lane detection started with deep 

learning, especially Convolutional Neural Networks 

(CNNs). CNNs showed a strong ability to learn features 

directly from raw images, which removed the need for 

manual feature extraction. Researchers quickly adapted 

semantic segmentation networks, like Fully 

Convolutional Networks (FCN), Seg Net, and U-Net, for 

lane detection. These models delivered much higher 

accuracy and reliability, especially in noisy and complex 

situations. FCN-based architectures transformed lane 

detection from simply identifying lines to classifying 

each pixel. This allowed the networks to better 

distinguish between lanes, shadows, edges, and other road 

features.  

As deep learning advanced, models designed for lane 

detection started to emerge. Networks like SCNN (Spatial 

CNN), Lane Net, ENet-SAD, and PINet focused on 

spatial relationships and the continuous structure of lanes, 

rather than looking at each pixel on its own. SCNN 

introduced the concept of message passing in spatial 

directions, allowing for lane detection even when large 

sections were blocked or absent. Lane Net used an 

instance segmentation strategy, recognizing each lane as 

a separate instance instead of just a class. These 

improvements represented a major step forward for 

dependable lane detection in various driving situations. 

However, deep learning models, even those made for lane 

detection, still had limitations in real-world use. Most 

models only performed well on curated datasets taken 

during the day. When they encountered night-time 

conditions, uneven lighting, rain, fog, or roads with low 

visibility, their accuracy often dropped sharply. This issue 

led to the creation of strategies for adapting to different 

conditions, pipelines for enhancing data, and techniques 

for improving night-time visibility. Recent studies 

explored methods like histogram equalization, CLAHE, 

neural illumination correction, and image-to-image 

translation using GANs (Generative Adversarial 

Networks) to boost lane visibility at night. These 

approaches inspired the enhancement step in this project, 

where adaptive gamma correction and image 

enhancement techniques were combined before 

processing frames with YOLOP to improve lane detection 

in low-light situations. 

Parallel to advancements in lane detection, the field of 

autonomous driving started to require better scene 

understanding. The focus shifted from just detecting lane 

lines to understanding the whole road. This included 

identifying drivable areas, separating the road from 

sidewalks or off-road zones, and recognizing dynamic 

objects like vehicles, pedestrians, and cyclists. This change 

led to multi-task learning models, 

 where one network handled several perception tasks at 

once. YOLO-based architectures were key in enabling real-

time object detection, encouraging researchers to create 

unified models for complete driving perception.  

YOLOP, which stands for You Only Look Once for 

Panoptic Driving Perception, has become one of the most 

important contributions in this area. YOLOP combines 

object detection, drivable area segmentation, and lane 

segmentation into a single, seamless framework. By sharing 

feature maps across different tasks, YOLOP improves 

efficiency and lowers the computational load compared to 

running several models separately. Its CSP Darknet-based 

backbone and multi-branch decoder strike a solid balance 

between accuracy and real-time performance. Studies have 

shown that YOLOP outperforms other models on large-

scale datasets like BDD100K, making it a key model for 

integrated driving perception.  

Despite YOLOP’s success, research shows that multi-task 

models face several challenges. One major issue is domain 

generalization. Deep learning models often overfit specific 

data sets and do poorly under unseen conditions, 

particularly at night or in bad weather. Another limitation is 

the lack of temporal reasoning; most current models 

consider frames separately instead of analyzing visual 

information over time. Researchers have suggested using 

3D CNNs, LSTM-based designs, and temporal attention 

networks to tackle the problem of inconsistencies between 

frames. At the same time, transformer-based models have 

become popular for their ability to better capture global 

dependencies compared to CNNs. Vision Transformers 

(ViT), Swin Transformer, and hybrid CNN-transformer 

models have recently been studied in lane detection 

research. These models show great promise in capturing 

long-range spatial relationships that are vital for 

maintaining lane continuity. 

The literature shows growing efforts to create lightweight 

architectures that work well on embedded platforms. Since 

autonomous vehicles depend on real-time perception, 

models need to achieve a balance between high accuracy 

and low computational cost. Techniques like model 

pruning, quantization, knowledge distillation, and efficient 

layer designs such as Mobile Net and Shuffle Net have been 

used in lane detection networks. These methods help reduce 

complexity while maintaining performance.  

A key insight from recent studies is the strong link between 

image quality and detection accuracy. Poor lighting, motion 
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blur, glare, or environmental noise directly impacts model 

predictions. As a result, researchers have highlighted the 

need for pre-processing improvement pipelines designed 

for challenging conditions. This project builds on this 

work by adding night-time visibility enhancement to 

YOLOP's inference pipeline. Experiments show that 

improving luminance and contrast before inputting 

images into the model significantly clarifies lane 

boundaries, resulting in better segmentation outcomes. 

This matches broader research trends that support 

combining traditional enhancement techniques with 

modern deep learning methods. 

Overall, the evolution of lane detection, from handcrafted 

edge detectors to multi-task learning frameworks, reflects 

the ongoing development of computer vision and 

autonomous driving research. The literature shows a 

continuous effort to tackle real-world challenges like 

environmental changes, computational efficiency, and 

multi-modal perception. With the rise of transformers, 

domain adaptation methods, and improved pre-

processing techniques, the field is getting closer to 

creating stable, reliable, and usable lane detection systems 

that support fully autonomous driving. This work adds to 

the existing knowledge by reviewing current solutions, 

implementing a new model, and including night-time 

enhancement strategies to tackle one of the most 

persistent challenges identified in the literature. 

3. METHODOLOGY  

 

Lane detection has progressed a lot. It has changed from 

simple image processing methods to powerful machine 

learning and deep learning techniques. In this section, we 

will examine the technology's evolution and point out the 

strengths and weaknesses of different approaches. 

 

3.1. Traditional Methods: Where It All Began 

 

Early lane detection used basic image processing tools 

like Canny edge detection and Hough Transform. These 

methods were easy to implement and quick, which made 

them popular. However, they had a major problem; they 

worked well only in perfect conditions. When the road 

was wet, poorly lit, or when lane markings were faded or 

curved, these methods often did not work. 

 

3.2. CNN-Based Lane Detection 

 

Convolutional Neural Networks (CNNs) transformed the 

field by learning patterns from data rather than relying on 

preset rules. CNNs were able to detect lanes more 

accurately, even when the markings were worn or 

partially obstructed. Agarwal and Dutta pointed out that 

CNNs usually outperformed traditional methods. 

However, their high computational cost made real-time 

use on devices with limited hardware difficult. 

 

 

3.3. Spatial CNNs and Temporal Improvements 

 

To improve lane continuity and stability across frames, 

Zhang et al. introduced a Spatial CNN (SCNN) model. 

Unlike standard CNNs, SCNNs can transmit information 

across the image, row by row and column by column. 

This capability helps detect lanes more clearly, especially 

in curved or obstructed areas. Including temporal features, 

which take into account video frame sequences instead of 

single images, further improved detection consistency over 

time. 

 

3.4. All-in-One Models: Multi-Task Learning 

 

Modern systems often perform multiple tasks. They not 

only detect lanes but also find drivable areas and identify 

vehicles or obstacles. One well-known model is YOLOP 

(You Only Look Once for Panoptic Driving Perception) by 

Wang et al. [3]. It handles all three tasks within a single 

network, sharing features to save time and improve results. 

YOLOP is fast enough for real-time use and produces good 

outcomes, but it is still somewhat heavy for small, low-

power devices. 

 

4. PROPOSED FRAMEWORK 

The proposed framework introduces a better lane detection 

system based on the YOLOP multi-task architecture. It is 

specifically optimized for real-world low-visibility driving 

conditions. Although YOLOP combines lane segmentation, 

drivable area segmentation, and object detection into a 

single process, its performance decreases significantly at 

night. To tackle this issue, the proposed framework adds a 

dedicated Night-Time Enhancement Module that prepares 

input frames before YOLOP inference. This improves 

feature visibility and leads to more reliable lane predictions. 

The overall framework consists of five major stages: Input 

Acquisition, Night-Time Enhancement, Multi-Task 

Perception (YOLOP), Post-Processing, and Final Output 

Visualization. A block diagram representation of the 

framework is shown below: 
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Fig 1: block diagram 
4.1. Input Acquisition 

The system begins by capturing frames from an onboard 

camera mounted on the vehicle (or an edge device like a 

smartphone). These frames serve as the raw input for the 

enhancement and perception modules. 

Key characteristics of the input stream: 

• Real-time video frames (RGB) 

• Varying lighting conditions (day, dusk, 

night) 

• Presence of shadows, glare, occlusions, 

and noise 

4.2. Night-Time Enhancement Module (Project 

Innovation) 

To overcome challenges associated with low-light 

environments, a specialized enhancement pipeline is 

integrated before YOLOP processing. 

This module performs: 

1.Gamma Correction 

• Brightens dark regions while preserving 

highlights 

• Enhances lane visibility in dim 

conditions 

2.CLAHE (Contrast-Limited Adaptive Histogram 

Equalization) 

• Improves local contrast 

• Reduces glare and improves edge clarity 

3.Adaptive Brightness & Noise Reduction 

• Automatically adjusts brightness based on 

frame statistics 

• Suppresses noise from sensors and 

headlights 

4.3. Multi-Task Perception Module (YOLOP Model) 

After enhancement, the processed frames are forwarded to 

YOLOP, a unified multi-task neural network designed for 

autonomous driving perception. YOLOP uses a shared 

backbone (encoder) and three parallel heads: 

1. Lane Line Segmentation Head 

o Predicts lane boundaries pixel-

wise 

o Handles broken lanes, curves, and 

occlusions 

2. Drivable Area Segmentation Head 

o Identifies safe regions where the 

vehicle can move 

o Distinguishes between road, 

shoulders, and non-driveable areas 

3. Object Detection Head 

o Detects vehicles, pedestrians, two-

wheelers, etc. 

o Outputs bounding boxes, classes, 

and confidence scores 

Advantages of multi-task architecture: 

• Shared computation reduces latency 

• Cross-task reinforcement improves 

accuracy 

• Suitable for real-time ADAS and 

autonomous vehicles 

4.4. Post-Processing and Lane Stabilization 

The outputs from YOLOP undergo several refinement 

steps: 

• Lane Curve Fitting using polynomial 

approximation 

• Noise filtering to remove false lane 

segments 

• Temporal smoothing across continuous 

frames to reduce flicker 

• Confidence thresholding for reliable lane 

predictions 

These steps ensure that lane boundaries remain stable even 

during motion blur, occlusions, or abrupt illumination 

changes. 
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4.5. Final Output Visualization 

The processed results are combined and displayed as an 

overlay on the input frame. The visualization includes: 

• Highlighted lane lines (left and right 

lanes) 

• Detected drivable region mask 

• Bounding boxes around detected objects 

• Frame-by-frame status indicators 

(confidence, FPS, etc.) 

The final output provides a comprehensive and intuitive 

view of the road, enabling safer and more accurate 

autonomous navigation. 

5. MODELLING AND ANALYSIS 

The proposed vision-based perception system for 

autonomous driving integrates three major tasks—lane 

detection, drivable area segmentation, and object 

detection—within a unified deep learning architecture. 

This section explains the functioning, importance, and 

analysis of each component, followed by a detailed 

overview of the multi-task framework that binds them 

together. 

5.1 . Lane Detection 

Lane detection is the core task in road scene 

understanding. It focuses on identifying visible lane 

boundaries on the road surface using image-based 

segmentation. In this project, lane detection is 

implemented using a deep convolutional neural network 

that classifies every pixel of the input image into either 

“lane” or “non-lane.” 

Modern systems, including YOLOP, utilize a shared 

encoder (typically a CNN-based feature extractor like 

CSP Darknet) that captures low-level patterns such as 

edges, textures, and global lane structures. The extracted 

features are then passed to a dedicated lane segmentation 

head, responsible for generating binary masks that 

highlight lane lines. 

The segmentation head applies convolutional filters, up-

sampling layers, and skip connections to reconstruct high-

resolution lane maps. Loss functions commonly used for 

this task include Dice Loss, Binary Cross Entropy (BCE), 

or a combination of both to handle class imbalance—

since lane pixels usually represent a very small portion of 

the image. 

The resulting lane mask is stable enough to support real-

time lane keeping, lane departure warnings, and path 

planning. CNN-based lane detection significantly 

outperforms traditional techniques by maintaining 

accuracy even when lane markings are faded, curved, 

obstructed, or influenced by varying light conditions. 

 

Fig 2: Lane detection using CNN 
 

 

5.2. Drivable Area Segmentation 

Drivable area segmentation determines which parts of the 

road are safe for the vehicle to travel. Unlike lane 

detection—which depends on explicit markings—this task 

relies on contextual road cues such as road texture, 

boundaries, sidewalks, and curbs. 

The drivable area head in YOLOP is implemented as a 

semantic segmentation branch, similar to the lane detection 

head but optimized for broader region masks. It classifies 

each pixel into categories such as “drivable” and 

“undrivable.”This task identifies safe driving areas on 

the road, even without lane markings. It works 

alongside lane detection by using context clues like 

road edges, curbs, and sidewalks. The segmentation 

head predicts a mask for drivable areas, often trained 

with Focal or Cross-Entropy Loss. 

This task becomes essential when: 

• Lane markings are absent 

• Complex road designs exist (roundabouts, 

junctions) 

• Roads are damaged or unmarked 

• The view of lanes is obstructed 

The segmentation output allows the vehicle to understand 

free space for planning maneuvers such as overtaking, lane 

merging, or avoidance. Models typically use Cross Entropy 

Loss or Focal Loss to handle ambiguous road textures and 

class imbalance. 
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Fig 2: Drivable area segmentation  

 
5.3. Object Detection 

Object detection identifies and locates vehicles, 

pedestrians, bicycles, and other moving elements in the 

driving scene. This component makes sure that the 

autonomous system doesn’t misinterpret blocked lanes or 

enter dangerous areas. YOLOP’s detection module uses 

YOLO’s bounding box regression and classification 

framework. It predicts: 

The coordinates of bounding boxes 

• Object class labels 

• Confidence scores 

The model processes features extracted from the shared 

encoder and sends them to multi-scale detection heads. 

This allows it to detect both small and large objects. This 

ability is important for:  

• Avoiding collisions 

• Determining if lane boundaries are 

partially blocked 

• Enhancing the system’s situational 

awareness 

• Planning safe trajectories 

 

The object detection loss usually combines Localization 

Loss, Confidence Loss, and Class Probability Loss, 

following YOLO’s standard training method. In addition, 

techniques like Non-Maximum Suppression (NMS) are 

used to eliminate duplicate detections. The multi-scale 

design also boosts performance in crowded or complex 

road scenes. This makes the detection branch very reliable 

for real-time driving situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Object detection 
 

 

 

5.4 . Multi-Task Learning Architecture 

 

The strength of the proposed system lies in its multi-task 

learning (MTL) design, where a single encoder is shared 

across three separate decoders: 

1. Lane Detection Head 

2. Drivable Area Segmentation Head 

3. Object Detection Head 

The shared encoder cuts down on redundancy, lowers 

computational cost, and decreases latency. By learning 

from several related tasks at the same time, the network 

creates richer and more general feature representations. 

Lane markings, drivable surfaces, and objects often have 

contextual relationships, and MTL helps the model take 

advantage of these connections. 

Benefits of the multi-task framework include: 

• Higher efficiency → fewer parameters 

and faster inference 

• Improved accuracy → shared features 

enhance all tasks 

• Better generalization → model becomes 

robust to variability 

• Real-time performance → suitable for 

on-road deployment 

 

However, MTL also presents challenges, like balancing 

losses between tasks and making sure that one task does not 

take over the learning process. Still, YOLOP is known as 

one of the most practical and powerful architectures for 

unified driving perception. 
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5.5 . Overall Analysis 

YOLOP’s multi-task framework manages lane detection, 

drivable area segmentation, and object recognition in real-

time. It outperforms traditional single-task models.  

Key advantages include:   

• Increased stability even in complex situations.   

• Less flickering due to richer feature representation.   

• Improved performance in different lighting and weather 

conditions.   

• Real-time inference speeds that are suitable for ADAS 

and AVs.   

• Greater accuracy in segmentation and detection tasks.   

• Graph: Radar chart showing IoU, map, FPS for YOLOP 

compared to other models like Lane Net or SCNN.   

The multi-task structure reduces the need for separate 

models, which lowers overall memory usage. It also 

provides better scene understanding by sharing features 

across tasks. These advantages lead to smoother and more 

reliable outputs during continuous driving sequences.   

Limitations:   

• Reduced performance in extreme weather or low-light 

conditions.   

• Computational challenges on low-power embedded 

devices.   

Future Directions:   

• Lightweight transformer-based designs and temporal 

modelling can improve efficiency, robustness, and real-

world reliability.   

Integrating advanced video-based tracking modules and 

better low-light enhancement techniques can further 

boost overall system performance.   

 

Fig 4: Temporal IoU between Consecutive Frames 

 

Fig 5: Detection Ratio per Frame 

 

6. CONCLUSION 

Lane detection has changed a lot from its early days with 

basic image-processing methods to the advanced deep 

learning models we use now. Traditional techniques like 

edge detection and Hough Transform were helpful but 

struggled in real-world driving situations, especially with 

issues like low light, faded markings, obstacles, or 

complicated road layouts. The shift to machine learning, 

especially deep neural networks, has revolutionized the 

field. These systems can now learn valuable features on 

their own, adjust to different environments, and understand 

road scenes more accurately. 

Multi-task learning frameworks, like YOLOP, have taken 

this development further by combining lane detection, 

drivable area segmentation, and object detection into one 

system. This approach resembles how humans view their 

environment, which helps autonomous driving systems 

become smarter, more aware of their context, and able to 

operate in real time. Using shared encoders, task-specific 

decoders, and effective feature extraction has greatly sped 

https://ijsrem.com/
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up and increased the reliability of lane detection systems 

in various driving situations. 

Despite these advancements, several challenges remain. 

Existing models still struggle to maintain temporal 

consistency, perform well in extreme weather, and run 

efficiently on vehicle hardware with limited computing 

power. Dataset limitations, changes in domain, and the 

need for interpretability also point to areas needing more 

innovation. The current landscape shows clear movement 

toward transformer-based architectures, lightweight 

model compression strategies, and improved night vision 

or low-light processing. Your project begins to tackle 

these areas through enhanced night-time visibility. 

Overall, this review highlights the fast progress and 

ongoing potential of machine learning for lane detection. 

The ongoing improvement of deep learning models, along 

with better datasets and hardware optimization, is pushing 

the field closer to dependable, real-world autonomous 

driving. As research moves forward to close the 

remaining gaps, machine learning-based lane detection 

will be crucial in creating safer, smarter, and more 

efficient transportation systems. 

7. FUTURE SCOPE 

Despite significant progress in deep learning for lane 

detection, there are still ways to improve real-world 

performance. A key direction for future work is 

developing lightweight and hardware-efficient models 

that can run smoothly on embedded automotive 

platforms. Techniques like model pruning, quantization, 

and knowledge distillation can help lower computational 

load while maintaining high accuracy. This will enable 

wider use in commercial ADAS systems. 

Another important area involves improving temporal 

stability. Most current models process each frame 

independently. This leads to occasional inconsistencies 

under occlusion, vibration, or sudden changes in lighting. 

Incorporating temporal modelling through approaches 

like 3D CNNs, LSTMs, optical flow, or transformer-

based sequence learning can help maintain smoother and 

more reliable lane predictions across video sequences. 

Improving strength in challenging environments is a key 

research focus. Real-world roads have different 

conditions, such as rain, fog, night-time glare, shadows, 

and faded markings. Larger datasets, domain adaptation 

methods, and synthetic-to-real transfer learning can help 

models work better across various weather, lighting, and 

geographic situations. This project enhances lane 

visibility at night, but future work could look into better 

lighting improvement using GAN-based or transformer-

based correction. 

Finally, future systems may shift toward deeper integration 

with complete driving tasks. Combining lane detection with 

steering prediction, modelling lane-change intent, or 

planning paths can create a stronger base for autonomous 

navigation. Model transparency is just as important. 

Techniques for explain ability, estimating uncertainty, and 

validating safety will be essential for building trust and 

gaining regulatory approval of AI-driven driving systems. 

Overall, the future of lane detection lies in creating models 

that are efficient, temporally consistent, environmentally 

resilient, and seamlessly connected to broader autonomous 

driving functions. 
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