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Abstract - Lane detection is one of the most fundamental
components of intelligent transportation systems,
particularly in autonomous vehicles and modern
Advanced Driver Assistance Systems (ADAS). Accurate
lane perception enables safe navigation, stable lane
keeping, and informed decision-making. Traditional lane
detection approaches—such as Canny edge detection,
Hough Transform, and color-based thresholding—show
reasonable performance in controlled environments but
fail under challenging real-world conditions involving
low visibility, shadows, faded lane markings, and abrupt
illumination changes. With the rise of deep learning,
particularly Convolutional Neural Networks (CNNs),
models have gained the ability to learn robust lane
features directly from data. However, real-world driving
requires more than lane detection; it also demands an
understanding of drivable areas and the presence of
objects such as vehicles or pedestrians.

This paper presents a comprehensive review of classical
and modern lane detection techniques, with a focus on
multi-task deep learning architectures, such as YOLOP
(You Only Look Once for Panoptic Driving Perception).
We also implement YOLOP on real-world Indian road
videos and enhance its performance on nighttime scenes
using custom brightness, contrast, and gamma
preprocessing. The integration of night enhancement
improved lane IoU from 0.72 to 0.84 and pixel accuracy
from 0.88 to 0.93. The review highlights major
advancements, limitations, research gaps, and future
opportunities in machine-learning-based lane detection.
The findings emphasize that multi-task learning, domain
adaptation, and lightweight models are essential steps
toward practical and reliable autonomous vehicle
perception systems.

Keywords— Lane detection, YOLOP, multitask
learning, CNN, semantic segmentation, object detection,
night enhancement.

1. INTRODUCTION

In the age of rapidly evolving smart transportation
technologies, autonomous vehicles (AVs) and Advanced
Driver Assistance Systems (ADAS) are revolutionizing
how society approaches road safety, mobility, and traffic
management. These systems are gradually shifting the
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responsibility of driving from humans to intelligent

machines capable of sensing, interpreting, and
responding to complex real-world environments. For such
systems to operate safely and effectively, one fundamental
capability stands above all others — the ability of a vehicle
to accurately “see” and understand the road. At the heart of
this perception lies lane detection, a task so central that
without it, even the most advanced autonomous system
would fail to maintain stable navigation or make safe
decisions.

Lane detection research started long before modern Al-
driven perception systems became common. Early methods
mainly used traditional image-processing techniques. For
example, the Canny edge detector identified sharp changes
in pixel intensity that corresponded to lane boundaries. The
Hough Transform was another method used to find linear
or parametric structures within the detected edges. These
methods were computationally light, straightforward, and
easy to implement. This made them suitable for the early
phases of intelligent vehicle development. However,
despite their simplicity and early potential, traditional
methods did not have the flexibility needed to perform
reliably in real-world driving conditions.

Real-world road environments are unpredictable and
visually inconsistent. Lane markings can be faded, worn
out, partially blocked by vehicles, distorted due to road
curves, covered in dirt or debris, or completely missing in
poorly maintained areas. Lighting conditions also change
dramatically throughout the day, from bright sunlight and
glare to long shadows, and into night-time darkness where
lane visibility greatly decreases. Weather makes things
even more challenging by adding rain streaks, fog, snow,
reflections, and other visual disturbances. In these
situations, traditional edge-based or colour-thresholding
methods often fail. They can detect false edges, misclassify
road artifacts, or lose lane cues completely. These problems
show the need for perception systems that can learn and
generalize beyond limited, fixed rules.

This realization led to the rise of machine learning and,
eventually, deep learning-based lane detection. Instead of
manually designing filters or thresholds, machine learning
allowed systems to learn meaningful lane patterns directly
from data. The introduction of Convolutional Neural
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Networks (CNNs) changed the field by allowing
hierarchical feature extraction, from simple edges in
shallow layers to complex lane textures, shapes, and
contextual information in deeper layers. CNN-based
models quickly surpassed traditional methods in
robustness and accuracy, especially under challenging
conditions like shadows, partial occlusions, worn-out
markings, or curved road segments. More advanced
architectures, such as Spatial CNNs (SCNNs), improved
lane continuity understanding by letting information
move across image rows and columns, thus enhancing
detection in curves and visually cluttered scenes.

As autonomous systems developed, researchers realized
that detecting lane lines alone did not provide a complete
understanding of the road. Vehicles also needed to
recognize drivable areas, understand road boundaries,
detect other vehicles, and interpret changing traffic
situations. This realization led to the creation of multi-
task learning frameworks that could handle several
perception tasks within one design. Among these,
YOLOP (You Only Look Once for Panoptic Driving
Perception) is a prominent model. YOLOP combines
object detection, lane detection, and drivable area
segmentation in a single encoder-decoder network. By
sharing feature representations across tasks, YOLOP
lowers computational costs, improves contextual
understanding, and achieves real-time performance,
making it a strong option for practical ADAS and AV
applications.

Despite these advancements, several challenges remain.
Autonomous vehicles must operate consistently in
changing lighting conditions, various weather patterns,
occlusions, geographical differences, and hardware
limits. Night-time driving is particularly challenging
because of low light, headlight glare, and less contrast
between lanes and the surrounding area. Thick shadows,
rain, fog, and reflections add extra visual noise that can
confuse even the best neural models. Using embedded
automotive hardware also demands efficient models that
work in real-time with minimal delay. In addition, dataset
limitations and differences across regions create obstacles
for model generalization.

This review paper aims to provide a clear and detailed
understanding of how lane detection systems have
advanced. It covers the shift from early, rule-based image
processing methods to modern deep learning models and
multi-task perception systems. The paper looks into the
theories behind each approach, highlighting their
strengths and weaknesses. It also includes a practical
implementation of YOLOP, which has been specifically
improved for better performance at night. These proposed
changes tackle one of the biggest challenges in self-
driving: ensuring reliable lane detection in low-light
conditions.
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The motivation for this study comes from the urgent need
to close the gap between research-level lane detection
models and their effective use in real-world situations.

This work has four main goals:

1. To explore how deep learning and multi-task
architectures improve lane detection compared to
traditional methods.

2. To evaluate YOLOP’s performance in tough real-world
situations, including night-time and low-visibility
conditions.

3. To identify ongoing issues in lane detection research
related to occlusions, lighting changes, dataset biases, and
computational limits.

4. To implement and analyze night-time enhancement
techniques focused on improving lane visibility and safety
during low-light driving.

By looking at the evolution, challenges, and opportunities
in lane detection research, this paper aims to help develop
safer, smarter, and more reliable vision-based driving
systems. As the transportation industry approaches true
autonomous mobility, strong and dependable lane detection
remains essential for ensuring safety and trust in the next
generation of intelligent vehicles.

2. LITERATURE REVIEW

The development of lane detection has changed
significantly over the last thirty years. Early research in this
area mainly focused on traditional computer vision
methods that relied heavily on manual features and fixed
rules. One of the first foundations for lane detection was
based on edge techniques like the Canny edge detector.
This method aimed to find lane boundaries by highlighting
strong intensity changes. Typically, these techniques were
paired with mathematical tools like the Hough Transform
to identify straight or slightly curved lane shapes. While
these methods worked reasonably well in controlled
settings and on well-marked highways, their effectiveness
in real-world situations quickly faced challenges.
Variations in lighting, road surfaces, lane paint quality,
weather conditions, and shadows created inconsistencies
that rigid algorithms could not handle well. Consequently,
although these traditional methods are historically
important, they struggled to perform reliably in
unpredictable environments.

A major shift happened with the rise of machine learning,
which brought data-driven decision-making to lane
detection. Instead of using manually designed filters,
machine learning tried to classify pixels, edges, or patches
based on features learned from labelled  datasets.
Techniques like Support Vector Machines (SVMs),
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Random Forests, and k-Nearest Neighbour (KNN) were
used for lane-marking detection tasks, often relying on
handcrafted descriptors such as Histogram of Oriented
Gradients (HOG) or colour histograms. Although this
change showed progress, the success of these models was
still limited by the quality and effectiveness of the manual
features. Handcrafted features could not adapt well and
failed to capture the complex variations in road images,
especially in challenging conditions like night driving or
heavy rain.

The real change in lane detection started with deep
learning, especially Convolutional Neural Networks
(CNNs). CNNs showed a strong ability to learn features
directly from raw images, which removed the need for
manual feature extraction. Researchers quickly adapted
semantic  segmentation  networks, like  Fully
Convolutional Networks (FCN), Seg Net, and U-Net, for
lane detection. These models delivered much higher
accuracy and reliability, especially in noisy and complex
situations. FCN-based architectures transformed lane
detection from simply identifying lines to classifying
each pixel. This allowed the networks to Dbetter
distinguish between lanes, shadows, edges, and other road
features.

As deep learning advanced, models designed for lane
detection started to emerge. Networks like SCNN (Spatial
CNN), Lane Net, ENet-SAD, and PINet focused on
spatial relationships and the continuous structure of lanes,
rather than looking at each pixel on its own. SCNN
introduced the concept of message passing in spatial
directions, allowing for lane detection even when large
sections were blocked or absent. Lane Net used an
instance segmentation strategy, recognizing each lane as
a separate instance instead of just a class. These
improvements represented a major step forward for
dependable lane detection in various driving situations.

However, deep learning models, even those made for lane
detection, still had limitations in real-world use. Most
models only performed well on curated datasets taken
during the day. When they encountered night-time
conditions, uneven lighting, rain, fog, or roads with low
visibility, their accuracy often dropped sharply. This issue
led to the creation of strategies for adapting to different
conditions, pipelines for enhancing data, and techniques
for improving night-time visibility. Recent studies
explored methods like histogram equalization, CLAHE,
neural illumination correction, and image-to-image
translation using GANs (Generative Adversarial
Networks) to boost lane visibility at night. These
approaches inspired the enhancement step in this project,
where adaptive gamma correction and image
enhancement techniques were combined before
processing frames with YOLOP to improve lane detection
in low-light situations.
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Parallel to advancements in lane detection, the field of
autonomous driving started to require better scene
understanding. The focus shifted from just detecting lane
lines to understanding the whole road. This included
identifying drivable areas, separating the road from
sidewalks or off-road zones, and recognizing dynamic
objects like vehicles, pedestrians, and cyclists. This change
led to multi-task learning models,

where one network handled several perception tasks at
once. YOLO-based architectures were key in enabling real-
time object detection, encouraging researchers to create
unified models for complete driving perception.

YOLOP, which stands for You Only Look Once for
Panoptic Driving Perception, has become one of the most
important contributions in this area. YOLOP combines
object detection, drivable area segmentation, and lane
segmentation into a single, seamless framework. By sharing
feature maps across different tasks, YOLOP improves
efficiency and lowers the computational load compared to
running several models separately. Its CSP Darknet-based
backbone and multi-branch decoder strike a solid balance
between accuracy and real-time performance. Studies have
shown that YOLOP outperforms other models on large-
scale datasets like BDD100K, making it a key model for
integrated driving perception.

Despite YOLOP’s success, research shows that multi-task
models face several challenges. One major issue is domain
generalization. Deep learning models often overfit specific
data sets and do poorly under unseen conditions,
particularly at night or in bad weather. Another limitation is
the lack of temporal reasoning; most current models
consider frames separately instead of analyzing visual
information over time. Researchers have suggested using
3D CNNs, LSTM-based designs, and temporal attention
networks to tackle the problem of inconsistencies between
frames. At the same time, transformer-based models have
become popular for their ability to better capture global
dependencies compared to CNNs. Vision Transformers
(ViT), Swin Transformer, and hybrid CNN-transformer
models have recently been studied in lane detection
research. These models show great promise in capturing
long-range spatial relationships that are vital for
maintaining lane continuity.

The literature shows growing efforts to create lightweight
architectures that work well on embedded platforms. Since
autonomous vehicles depend on real-time perception,
models need to achieve a balance between high accuracy
and low computational cost. Techniques like model
pruning, quantization, knowledge distillation, and efficient
layer designs such as Mobile Net and Shuffle Net have been
used in lane detection networks. These methods help reduce
complexity while maintaining performance.

A key insight from recent studies is the strong link between
image quality and detection accuracy. Poor lighting, motion
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blur, glare, or environmental noise directly impacts model
predictions. As a result, researchers have highlighted the
need for pre-processing improvement pipelines designed
for challenging conditions. This project builds on this
work by adding night-time visibility enhancement to
YOLOP's inference pipeline. Experiments show that
improving luminance and contrast before inputting
images into the model significantly clarifies lane
boundaries, resulting in better segmentation outcomes.
This matches broader research trends that support
combining traditional enhancement techniques with
modern deep learning methods.

Overall, the evolution of lane detection, from handcrafted
edge detectors to multi-task learning frameworks, reflects
the ongoing development of computer vision and
autonomous driving research. The literature shows a
continuous effort to tackle real-world challenges like
environmental changes, computational efficiency, and
multi-modal perception. With the rise of transformers,
domain adaptation methods, and improved pre-
processing techniques, the field is getting closer to
creating stable, reliable, and usable lane detection systems
that support fully autonomous driving. This work adds to
the existing knowledge by reviewing current solutions,
implementing a new model, and including night-time
enhancement strategies to tackle one of the most
persistent challenges identified in the literature.

3. METHODOLOGY

Lane detection has progressed a lot. It has changed from
simple image processing methods to powerful machine
learning and deep learning techniques. In this section, we
will examine the technology's evolution and point out the
strengths and weaknesses of different approaches.

3.1. Traditional Methods: Where It All Began

Early lane detection used basic image processing tools
like Canny edge detection and Hough Transform. These
methods were easy to implement and quick, which made
them popular. However, they had a major problem; they
worked well only in perfect conditions. When the road
was wet, poorly lit, or when lane markings were faded or
curved, these methods often did not work.

3.2. CNN-Based Lane Detection

Convolutional Neural Networks (CNNs) transformed the
field by learning patterns from data rather than relying on
preset rules. CNNs were able to detect lanes more
accurately, even when the markings were worn or
partially obstructed. Agarwal and Dutta pointed out that
CNNs usually outperformed traditional methods.
However, their high computational cost made real-time
use on devices with limited hardware difficult.
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3.3. Spatial CNNs and Temporal Improvements

To improve lane continuity and stability across frames,
Zhang et al. introduced a Spatial CNN (SCNN) model.
Unlike standard CNNs, SCNNs can transmit information
across the image, row by row and column by column.

This capability helps detect lanes more clearly, especially
in curved or obstructed areas. Including temporal features,
which take into account video frame sequences instead of
single images, further improved detection consistency over
time.

3.4. All-in-One Models: Multi-Task Learning

Modern systems often perform multiple tasks. They not
only detect lanes but also find drivable areas and identify
vehicles or obstacles. One well-known model is YOLOP
(You Only Look Once for Panoptic Driving Perception) by
Wang et al. [3]. It handles all three tasks within a single
network, sharing features to save time and improve results.
YOLOP is fast enough for real-time use and produces good
outcomes, but it is still somewhat heavy for small, low-
power devices.

4. PROPOSED FRAMEWORK

The proposed framework introduces a better lane detection
system based on the YOLOP multi-task architecture. It is
specifically optimized for real-world low-visibility driving
conditions. Although YOLOP combines lane segmentation,
drivable area segmentation, and object detection into a
single process, its performance decreases significantly at
night. To tackle this issue, the proposed framework adds a
dedicated Night-Time Enhancement Module that prepares
input frames before YOLOP inference. This improves
feature visibility and leads to more reliable lane predictions.

The overall framework consists of five major stages: Input
Acquisition, Night-Time Enhancement, Multi-Task
Perception (YOLOP), Post-Processing, and Final Output
Visualization. A block diagram representation of the
framework is shown below:
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3.Adaptive Brightness & Noise Reduction

| Edge device - Input

. Automatically adjusts brightness based on
| frame statistics
W4 . Suppresses noise from sensors and
headlights
Frame extraction
I L 4.3. Multi-Task Perception Module (YOLOP Model)
\/ After enhancement, the processed frames are forwarded to

YOLOQOP, a unified multi-task neural network designed for
autonomous driving perception. YOLOP uses a shared

‘ Lane and Drivable Area Masks

] [ backbone (encoder) and three parallel heads:
i 1. Lane Line Segmentation Head
‘ Frame Anuotation Function o Predicts lane boundaries pixel-
' . L wise
g b o Handles broken lanes, curves, and
\/ occlusions
S — 2. Drivable Area Segmentation Head
o Identifies safe regions where the
vehicle can move
o Distinguishes  between  road,
Fig 1: block diagram shoulders, and non-driveable areas
4.1. Input Acquisition 3. Object Detection Head
o Detects vehicles, pedestrians, two-
The system begins by capturing frames from an onboard wheelers, etc.
camera mounted on the vehicle (or an edge device like a o Outputs bounding boxes, classes,
smartphone). These frames serve as the raw input for the and confidence scores
enhancement and perception modules.
Key characteristics of the input stream: Advantages of multi-task architecture:
. Real-time video frames (RGB) o Shared computation reduces latency
. Varying lighting conditions (day, dusk, . Cross-task  reinforcement  improves
night) accuracy
. Presence of shadows, glare, occlusions, . Suitable for real-time ADAS and
and noise autonomous vehicles
4.2. Night-Time Enhancement Module (Project 4.4. Post-Processing and Lane Stabilization
Innovation)

The outputs from YOLOP undergo several refinement
To overcome challenges associated with low-light steps:

environments, a specialized enhancement pipeline is

integrated before YOLOP processing. o Lane Curve Fitting using polynomial
This module performs: approximation
. Noise filtering to remove false lane
1.Gamma Correction segments
. Temporal smoothing across continuous
. Brightens dark regions while preserving frames to reduce flicker
highlights . Confidence thresholding for reliable lane
. Enhances lane wvisibility in dim predictions
conditions

These steps ensure that lane boundaries remain stable even
2.CLAHE (Contrast-Limited Adaptive Histogram during motion blur, occlusions, or abrupt illumination

Equalization) changes.
. Improves local contrast
. Reduces glare and improves edge clarity
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4.5. Final Output Visualization

The processed results are combined and displayed as an
overlay on the input frame. The visualization includes:

o Highlighted lane lines (left and right
lanes)

. Detected drivable region mask

. Bounding boxes around detected objects
o Frame-by-frame status indicators

(confidence, FPS, etc.)

The final output provides a comprehensive and intuitive
view of the road, enabling safer and more accurate
autonomous navigation.

S. MODELLING AND ANALYSIS

The proposed vision-based perception system for
autonomous driving integrates three major tasks—Ilane
detection, drivable area segmentation, and object
detection—within a unified deep learning architecture.
This section explains the functioning, importance, and
analysis of each component, followed by a detailed
overview of the multi-task framework that binds them
together.

5.1 . Lane Detection

Lane detection is the core task in road scene
understanding. It focuses on identifying visible lane
boundaries on the road surface using image-based
segmentation. In this project, lane detection is
implemented using a deep convolutional neural network
that classifies every pixel of the input image into either
“lane” or “non-lane.”

Modern systems, including YOLOP, utilize a shared
encoder (typically a CNN-based feature extractor like
CSP Darknet) that captures low-level patterns such as
edges, textures, and global lane structures. The extracted
features are then passed to a dedicated lane segmentation
head, responsible for generating binary masks that
highlight lane lines.

The segmentation head applies convolutional filters, up-
sampling layers, and skip connections to reconstruct high-
resolution lane maps. Loss functions commonly used for
this task include Dice Loss, Binary Cross Entropy (BCE),
or a combination of both to handle class imbalance—
since lane pixels usually represent a very small portion of
the image.

The resulting lane mask is stable enough to support real-
time lane keeping, lane departure warnings, and path
planning. CNN-based lane detection significantly
outperforms traditional techniques by maintaining
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accuracy even when lane markings are faded, curved,
obstructed, or influenced by varying light conditions.

0 0,40 0.88

~

Fig 2: Lane detection using CNN

5.2. Drivable Area Segmentation

Drivable area segmentation determines which parts of the
road are safe for the vehicle to travel. Unlike lane
detection—which depends on explicit markings—this task
relies on contextual road cues such as road texture,
boundaries, sidewalks, and curbs.

The drivable area head in YOLOP is implemented as a
semantic segmentation branch, similar to the lane detection
head but optimized for broader region masks. It classifies
each pixel into categories such as “drivable” and
“undrivable.”This task identifies safe driving areas on
the road, even without lane markings. It works
alongside lane detection by using context clues like
road edges, curbs, and sidewalks. The segmentation
head predicts a mask for drivable areas, often trained
with Focal or Cross-Entropy Loss.

This task becomes essential when:

. Lane markings are absent

. Complex road designs exist (roundabouts,
junctions)

o Roads are damaged or unmarked

. The view of lanes is obstructed

The segmentation output allows the vehicle to understand
free space for planning maneuvers such as overtaking, lane
merging, or avoidance. Models typically use Cross Entropy
Loss or Focal Loss to handle ambiguous road textures and
class imbalance.
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Fig 2: Drivable area segmentation

5.3. Object Detection

Object detection identifies and locates vehicles,
pedestrians, bicycles, and other moving elements in the
driving scene. This component makes sure that the
autonomous system doesn’t misinterpret blocked lanes or
enter dangerous areas. YOLOP’s detection module uses
YOLO’s bounding box regression and classification
framework. It predicts:

The coordinates of bounding boxes

. Object class labels
. Confidence scores

The model processes features extracted from the shared
encoder and sends them to multi-scale detection heads.
This allows it to detect both small and large objects. This
ability is important for:

. Avoiding collisions

o Determining if lane boundaries are
partially blocked

. Enhancing the system’s situational
awareness

. Planning safe trajectories

The object detection loss usually combines Localization
Loss, Confidence Loss, and Class Probability Loss,
following YOLQ’s standard training method. In addition,
techniques like Non-Maximum Suppression (NMS) are
used to eliminate duplicate detections. The multi-scale
design also boosts performance in crowded or complex
road scenes. This makes the detection branch very reliable
for real-time driving situations.
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Fig 3: Object detection

5.4 . Multi-Task Learning Architecture

The strength of the proposed system lies in its multi-task
learning (MTL) design, where a single encoder is shared
across three separate decoders:

1. Lane Detection Head
2. Drivable Area Segmentation Head
3. Object Detection Head

The shared encoder cuts down on redundancy, lowers
computational cost, and decreases latency. By learning
from several related tasks at the same time, the network
creates richer and more general feature representations.
Lane markings, drivable surfaces, and objects often have
contextual relationships, and MTL helps the model take
advantage of these connections.

Benefits of the multi-task framework include:

. Higher efficiency — fewer parameters
and faster inference

) Improved accuracy — shared features
enhance all tasks

. Better generalization — model becomes
robust to variability

. Real-time performance — suitable for

on-road deployment

However, MTL also presents challenges, like balancing
losses between tasks and making sure that one task does not
take over the learning process. Still, YOLOP is known as
one of the most practical and powerful architectures for
unified driving perception.
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5.5 . Overall Analysis

YOLOP’s multi-task framework manages lane detection,
drivable area segmentation, and object recognition in real-
time. It outperforms traditional single-task models.

Key advantages include:

* Increased stability even in complex situations.

* Less flickering due to richer feature representation.

* Improved performance in different lighting and weather
conditions.

* Real-time inference speeds that are suitable for ADAS
and AVs.

* Greater accuracy in segmentation and detection tasks.

* Graph: Radar chart showing loU, map, FPS for YOLOP
compared to other models like Lane Net or SCNN.

The multi-task structure reduces the need for separate
models, which lowers overall memory usage. It also
provides better scene understanding by sharing features
across tasks. These advantages lead to smoother and more
reliable outputs during continuous driving sequences.

Limitations:

* Reduced performance in extreme weather or low-light
conditions.

* Computational challenges on low-power embedded
devices.

Future Directions:

» Lightweight transformer-based designs and temporal
modelling can improve efficiency, robustness, and real-
world reliability.

Integrating advanced video-based tracking modules and
better low-light enhancement techniques can further
boost overall system performance.
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6. CONCLUSION

Lane detection has changed a lot from its early days with
basic image-processing methods to the advanced deep
learning models we use now. Traditional techniques like
edge detection and Hough Transform were helpful but
struggled in real-world driving situations, especially with
issues like low light, faded markings, obstacles, or
complicated road layouts. The shift to machine learning,
especially deep neural networks, has revolutionized the
field. These systems can now learn valuable features on
their own, adjust to different environments, and understand
road scenes more accurately.

Multi-task learning frameworks, like YOLOP, have taken
this development further by combining lane detection,
drivable area segmentation, and object detection into one
system. This approach resembles how humans view their
environment, which helps autonomous driving systems
become smarter, more aware of their context, and able to
operate in real time. Using shared encoders, task-specific
decoders, and effective feature extraction has greatly sped
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up and increased the reliability of lane detection systems
in various driving situations.

Despite these advancements, several challenges remain.
Existing models still struggle to maintain temporal
consistency, perform well in extreme weather, and run
efficiently on vehicle hardware with limited computing
power. Dataset limitations, changes in domain, and the
need for interpretability also point to areas needing more
innovation. The current landscape shows clear movement
toward transformer-based architectures, lightweight
model compression strategies, and improved night vision
or low-light processing. Your project begins to tackle
these areas through enhanced night-time visibility.

Overall, this review highlights the fast progress and
ongoing potential of machine learning for lane detection.
The ongoing improvement of deep learning models, along
with better datasets and hardware optimization, is pushing
the field closer to dependable, real-world autonomous
driving. As research moves forward to close the
remaining gaps, machine learning-based lane detection
will be crucial in creating safer, smarter, and more
efficient transportation systems.

7. FUTURE SCOPE

Despite significant progress in deep learning for lane
detection, there are still ways to improve real-world
performance. A key direction for future work is
developing lightweight and hardware-efficient models
that can run smoothly on embedded automotive
platforms. Techniques like model pruning, quantization,
and knowledge distillation can help lower computational
load while maintaining high accuracy. This will enable
wider use in commercial ADAS systems.

Another important area involves improving temporal
stability. Most current models process each frame
independently. This leads to occasional inconsistencies
under occlusion, vibration, or sudden changes in lighting.
Incorporating temporal modelling through approaches
like 3D CNNs, LSTMs, optical flow, or transformer-
based sequence learning can help maintain smoother and
more reliable lane predictions across video sequences.

Improving strength in challenging environments is a key
research focus. Real-world roads have different
conditions, such as rain, fog, night-time glare, shadows,
and faded markings. Larger datasets, domain adaptation
methods, and synthetic-to-real transfer learning can help
models work better across various weather, lighting, and
geographic situations. This project enhances lane
visibility at night, but future work could look into better
lighting improvement using GAN-based or transformer-
based correction.

© 2025, IJSREM | https://ijsrem.com
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Finally, future systems may shift toward deeper integration
with complete driving tasks. Combining lane detection with
steering prediction, modelling lane-change intent, or
planning paths can create a stronger base for autonomous
navigation. Model transparency is just as important.
Techniques for explain ability, estimating uncertainty, and
validating safety will be essential for building trust and
gaining regulatory approval of Al-driven driving systems.

Overall, the future of lane detection lies in creating models
that are efficient, temporally consistent, environmentally
resilient, and seamlessly connected to broader autonomous
driving functions.
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