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Abstract: Ground object formations and intricate spatial layouts are characteristics of remote sensing images
(RSIs). Because ViT can collect long-range interactive information across patches of input photos, it may be a
useful option for scene classification. However, ViT is unable to generalize effectively when trained on
insufficient quantities of data since it lacks several of the inductive biases that CNNs are known for, such as
locality and translation equivariance. Transferring a large-scale pretrained ViT is more cost-effective and
performs better, even with small-scale target data, than training one from start. Despite being widely used in
scene classification, the cross-entropy (CE) loss performs poorly in generalization across scenes and is not very
robust to noise labels. The proposed ViT-CL model combines supervised contrastive learning (CL) with a ViT-
based model. Developed by expanding the self-supervised contrastive approach to the fully supervised context,
supervised contrastive (SupCon) loss for CL may explore the label information of RSIs in embedding space and
enhance the robustness to common image corruption. A joint loss function that combines SupCon loss and CE
loss is created in ViT-CL to encourage the model to learn more discriminative features. Additionally, a two-
stage optimization framework is presented to improve the controllability of the ViT-CL model's optimization
procedure. Comprehensive tests on the AID, NWPU-RESISC45, and UCM datasets confirmed ViT-CL's better
performance, with the greatest accuracies of 97.42%, 94.54%, and 99.76%, respectively, among all competing
approaches.

Keywords: Vision Transformer, Contrastive Learning, Remote Sensing, Scene Classification, Self-Supervised
Learning.

INTRODUCITON

An enormous volume of remote sensing (RS) images with a high spatial resolution (HSR) are produced daily
as a result of the quick advancement of Earth observation (EO) technology. These RS photos have enough land-
cover/land-use information to be useful for interpreting in a variety of domains, including traffic management,
land planning, and object detection. RS pictures have drawn more attention than other image interpretation
tasks. In order to refine the content of the RS images, RS images seek to assign a semantic label to the input RS
image. This label is taken from a predetermined label set. Since scene classification is done in feature space, the
model's ability to describe the features it extracts has a direct impact on the classification performance. Initially,
the majority of scene categorization techniques rely on manually created features, which are separated into low-
level and high-level features. Color [10], texture, and form are examples of visual qualities that are typically
used to generate low-level features. Additionally, mid-level features are produced by encoding the low-level
features using a variety of encoding techniques, including improved Fisher kernel (IFK), vectors of locally
aggregated descriptors (VLAD), and bagof-visual-words (BoVW). These manually created features have a
limited ability to express information and rely significantly on the skill of the designers. Deep learning has led
to the development of data-driven feature extraction techniques that are independent of past knowledge. To
effectively utilize category information and extract high-level semantic features, models in supervised deep
learning, in particular, learn deep features by training themselves on a large number of labeled datasets.
Convolutional neural networks (CNNs) are one of them that have demonstrated a strong ability to learn features
in visual applications. A number of traditional CNNs, including AlexNet, VGGNet, GoogLeNet [16], ResNet,
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and U-Net [18], have been proposed. Depending on how they are applied, CNN-based techniques for scene
classification can be categorized into three branches: using a pertained model as a feature extractor, refining a
pertained model, and creating a new model from start. Pertained CNNs are regarded as feature extractors in the
first branch. To obtain additional visual information, the generated features are then fused or mixed. Various
pertained CNNs are used in studies [19] to extract vision features and combine the resulting features. Fused
traits are more discriminated against, according to the research. Multilayer feature maps are extracted using the
CNN model in [20], and after being stacked, their covariance matrix is computed to merge the feature maps.
Lastly, categorization is done using the result covariance matrices. The models listed above show how well
CNNs generalize when it comes to scene classification.

Given the appealing properties of ViT and CL, in this article, a novel two-stage end-to-end framework for the
scene classification is proposed, named ViT-CL. ViT-CL aims to combine the advantages of the transformer
structure and the principle of contrastive learning to improve the performance of scene classification. First of
all, considering that the scale of RS image datasets is hardly sufficient to train ViT models from scratch,
transferring a large-scale pretrained ViT model to the target dataset, which can help ViT surpass inductive bias,
is preferred. Second, as a combination of SupCon loss and CE loss, a joint loss is proposed to fine tune the
pretrained ViT model. In this way, the two loss functions complement each other, forcing the model to learn
more discriminating high-level semantic features and further making the model more robust. Finally,
considering ViT is hard to optimize and sensitive to hyper parameters, we develop a two-stage optimization. In
the first stage, only CE loss is adopted to fine tune the pretrained ViT model on the target dataset. In the second
stage, the proposed joint loss is utilized to fine tune the model produced in the first stage. After the two-stage
fine tuning, the optimized model is obtained, but only the cross-entropy loss part of the model is retained for
the following inference.

LITERATURE SURVEY

In the first branch, pretrained CNNs are considered feature extractors, and then, the resulting features are fused
or combined to capture more visual information. Studies use different pretrained CNNs to extract vision features
and fuse the result features. The results show that fused features are more discriminated against. In, the CNN
model is used to extract multilayer feature maps, and these feature maps are combined by calculating their
covariance matrix of them after being stacked. Finally, the result covariance matrices are used for classification.
The aforementioned models demonstrate that CNNs have generalization capability for scene classification

X. Wu, J. Chanussot, D. Hong, and Z. Huang, An explanation of: Since they are small, infrared objects obtained
across long distances are easily absorbed by a complex and changing background. Small object recognition is
severely hampered by the current deep network detection framework's feature spatial resolution degradation,
which is brought on by the depth of the networks and several downsampling procedures. Finding a way to
balance network depth and feature spatial resolution while learning feature context representation and
interaction to stand out from the backdrop is therefore a critical and pressing objective. We suggest a deep
interactive U-Net architecture (abbreviated DI-U-Net) with strong feature learning and feature interaction
capabilities in order to achieve this. First, a high-resolution, multi-level network structure is used to accomplish
feature learning. This structure focuses on the global context information of the object and guarantees feature
resolution as the network depth increases. In order to learn object local context information, the dense feature
encoder (DFI) module then further enhances the feature interaction. Infrared small object detection is well-
suited for the suggested approach, which also produces good discriminability and strong object context
representation. The SISRT and Synthetic datasets are used for extensive testing, which shows how much better
and more efficient the suggested deeper U-Net is than earlier cutting-edge detection techniques.
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B. Zhang, J. Yao, L. Gao, and D. Hong, An explanation of Convolutional neural networks (CNNs) can record
spatial-spectral feature representations, they have been receiving more and more interest in the field of
hyperspectral (HS) picture categorization. However, their capacity to model the relationships between the
samples is still restricted. Recent proposals and practical use of graph convolutional networks (GCNs) in
irregular (or nongrid) data representation and analysis have overcome the drawbacks of grid sampling. In this
work, we conduct a thorough qualitative and quantitative investigation on CNNs and GCNs in relation to the
classification of HS images. Traditional GCNs typically suffer from a high computational cost, especially in
large-scale remote sensing (RS) issues, because of the adjacency matrix creation on all the data. Our goal is to
train large-scale GCNs in a small batch manner by creating a new mini batch GCN, which we refer to as min
1GCN from now on. Better still, our tiny GCN can improve classification performance by inferring out-of-
sample data without retraining networks. Additionally, since CNNs and GCNs are capable of extracting distinct
kinds of HS features, fusing them together is a simple way to overcome a single model's performance constraint.
Because tiny GCNs can train networks batch-wise, allowing CNNs and GCNs to work together, we investigate
three different fusion procedures to gauge the performance gain: concatenation fusion, element-wise
multiplicative fusion, and additive fusion. Extensive studies on three HS data sets show that micro GCNs are
superior to GCNs and that the investigated fusion procedures outperform the single CNN or GCN models. This
work's codes will be made publicly available at https://github.com/danfenghong/IEEE TGRS GCN in order to
ensure reproducibility.

The writers are W. Chen, S. Ouyang, W. Tong, X. Li, X. Zheng, Because of their strong feature extraction
capabilities, deep convolutional neural networks have emerged as a crucial technique for classifying remote
sensing image scenes. Currently available models are not able to adequately extract global and multiscale
information from the surface objects of complex sceneries. In order to extract multiscale global scene
information, we provide a framework called GCSANet that is built on densely linked convolutional networks
and global context spatial attention (GCSA). The discrete sample space is transformed continuous to increase
the smoothness in the data space's neighborhood, and the mixup operation is utilized to improve the spatial
mixed data of remote sensing photographs. Using the densely connected backbone network, the properties of
multiscale surface objects are retrieved and their internal dense connection is reinforced. In order to encode the
remote sensing scene image's context information into the local features, GCSA is added to the densely
connected backbone network. Four datasets of remote sensing scenes were used for experiments in order to
assess GCSANet's performance. With the highest classification precision on the AID and NWPU datasets and
the second-best performance on the UC Merced dataset, the GCSANet demonstrated its ability to efficiently
extract global features from remote sensing photo data. Furthermore, the GCSANet exhibits the best
classification accuracy on the dataset of generated mountain image scenes. These findings demonstrate that the
GCSANet is capable of efficiently extracting multiscale global scene data from intricate remote sensing
scenarios. You may find the source codes for this approach at https://github.com/ShubingOuyangcug/GCSANe.

J. Tian, J. Chanussot, W. Li, R. Tao, T X. Wu, D. Hong, and J. Tan Object recognition in optical remote sensing
pictures has garnered a lot of attention in recent decades due to the quick advancement of spaceborne imaging
technology. Even though many sophisticated works have been created using strong learning algorithms, the
need for addressing picture deformations—especially objective scaling and rotation—cannot be met by the
inadequate feature representation. To achieve this, we present a brand-new object recognition framework that
combines feature learning, quick picture pyramid matching, boosting technique, and various channel feature
extraction. It is named the Optical Remote Sensing Imagery detector (ORSIm detector). An ORSIm detector
adopts a novel spatial-frequency channel feature (SFCF) by taking into account both the original spatial channel
features (such as the color channel and gradient magnitude) and the rotation-invariant channel features that were
built in the frequency domain. To acquire the high-level or semantically relevant characteristics, we then use a
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learning-based technique to refine SFCF. We analytically estimate a scaling factor in the image domain to obtain
a quick and coarsely scaled channel computation in the test phase. The superiority and usefulness of the two
distinct aerial data sets are demonstrated through extensive experimental findings compared to the prior state-
of-the-art methodologies.

Liu S. et al. Accurate picture categorization is subject to strict regulations since very-high-resolution (VHR)
remote sensing images contain more detailed spatial information. It can be difficult to classify VHR photos
effectively and finely, especially in complex settings, because of the variety of land objects with intraclass
variance and interclass similarities. The geometric intricacies of land objects may be lost in deep feature layers,
even for some well-known deep learning (DL) frameworks. As a result, it is challenging to preserve highly
detailed spatial information (such as edges and small objects) by depending solely on the final high-level layer.
Furthermore, the ability of the model to generalize under few-shot learning is necessarily weakened by the
requirement for large, well-labeled data in many of the recently discovered DL techniques. In order to increase
the classification accuracy, this paper proposes a lightweight shallow-to-deep feature fusion network (SDF 2 N)
for VHR picture classification. Rich and representative information is learned by integrating classical machine
learning (ML) and deep learning (DL) approaches. To learn the saliency and discriminative information at
various levels for classification, a novel triple-stage fusion (TSF) module is specifically created once the shallow
spectral—spatial features have been recovered. Three feature fusion stages—Ilow-level spectral-spatial feature
fusion, middle-level multiscale feature fusion, and high-level multilayer feature fusion—are included in the TSF
module. By utilizing the shallow-to-deep characteristics, the suggested SDF 2 N is able to extract
complimentary and representative information from crossing layers. It's crucial to remember that the SDF 2 N
can still produce satisfactory classification results with fewer training data. Results from experiments conducted
on three actual VHR remote sensing datasets—two multispectral and one airborne hyperspectral image—
covering intricate urban situations attest to the efficacy.

PROPOSED WORK

ViT model into the RS images and improved the classification accuracy through data augmentation such as Cut
Mix and Cutout. Also, they proved that the model performance could be maintained even if half of the layers
were pruned to compress the network. Then, Bashmal et al. [44] proposed the data efficient image transformers
(DeiT), a ViT-based model trained by knowledge distillation with fewer data, and proved that the performance
of ViT was superior to the CNN-based method on the remote sensing datasets AID and NWPU-RESISC.

The goal of this project is to create an intelligent system capable of analyzing pictures taken by remote sensing
devices. Utilizing satellites or airplanes to collect data about the Earth's surface is known as remote sensing.
Developing a computer program that can automatically identify and classify various scenes in these photos is
the aim. For instance, it may recognize urban areas, forests, or waterways. The system will be able to correctly
classify situations in new, unseen photographs by using machine learning techniques to learn from a set of
sample images. There are useful uses for this kind of technology in industries including urban planning,
agriculture, and environmental monitoring. By advancing automated picture processing in remote sensing, the
initiative hopes to facilitate the understanding and management of our planet's resources.

1) Data Preparation

Collect and preprocess the remote sensing image dataset. This involves cleaning and organizing the data,
ensuring proper labeling of scenes, and converting images into a format suitable for the chosen model.
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2) Data Augmentation

Augmentation involves applying various transformations to the input images to artificially increase the size of
the training dataset. This step helps improve model generalization by exposing it to a diverse range of variations
in the data, such as rotations, flips, and zooms.

3) Data Splitting

Split the dataset into training, validation, and test sets. The training set is used to train the model, the validation
set helps tune hyper parameters and prevent overfitting, and the test set assesses the model's performance on
unseen data.

4) Model Selection

Choose a suitable model architecture for remote sensing image scene classification. This could involve selecting
a pre-existing architecture

5) Model Train

Train the selected model using the training dataset. During training, the model learns to map input images to
their corresponding scene classes by adjusting its internal parameters.

6) Evaluation

Evaluate the trained model's performance on the validation set and, optionally, the test set. Common evaluation
metrics include accuracy, precision, recall, and F1 score.

7) Model Save

Save the trained model's parameters to disk. This step is crucial for deploying the model for inference on new
data without having to retrain it. The saved model can be loaded later for predictions or further fine-tuning.

The (CNN) is a specialized deep learning model designed for image recognition and classification tasks. It
mimics the human visual system, featuring key components such as convolutional layers with filters for feature
extraction, ReLU activation for introducing non-linearity, and pooling layers for down sampling and retaining
essential information. The fully connected layers follow, where flattened features are processed, often
culminating in a softmax activation for classification. During training, the network undergoes forward
propagation to make predictions, and backward propagation to adjust weights based on prediction errors, using
optimization algorithms like Gradient Descent.

ViT-CL

"ViT-CL" were a specific model, it might indicate an integration of the Vision Transformer architecture with
contrastive learning techniques. This could involve using contrastive learning objectives during the training of
a ViT model to enhance the quality of learned representations. The contrastive loss could encourage the model
to learn semantically meaningful features from the data, helping in tasks beyond classification, such as feature
extraction or transfer learning. ViT-CL" model, I recommend checking the latest research papers, preprints, or
official documentation from reputable sources in the field of computer vision and machine learning.
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Figure 1. System architecture.
EXPERIMENTAL ANALYSIS

One of the main tasks in Earth observation is remote sensing image scene classification (RSISC), which has
uses in environmental monitoring, urban planning, and land-use analysis. Despite their impressive performance,
traditional convolutional neural networks (CNNs) have trouble capturing the long-range contextual
relationships found in huge, high-resolution images. Because of their ability to represent global interactions,
Vision Transformers (ViT) offer a possible substitute. However, ViTs are computationally demanding and
usually require large-scale tagged datasets. In this research, we propose a two-stage method that applies
supervised fine-tuning of a ViT backbone for scene classification after learning robust patch-level and image-
level representations using contrastive self-supervised pretraining

I

Performances

Figure 2. Performance analysis.

In addition to presenting ablation studies investigating the effects of contrastive loss selections, augmentation
techniques, and projection head design, we assess our approach on popular RSISC benchmarks (UC Merced,
AID, NWPU-RESISCA45). Our suggested pipeline eliminates the need for large amounts of labeled data,
increases robustness to domain shifts, and produces better generalization under limited-label regimes.

F1- Top-
Experiment | Pretraining | Dataset Accuracy | Precision | Recall Score A(;I:: 115rac Observations /
/Model | Method | Used (%) (%) ) | o | o Y| Remarks
CNN Strong
Baseline baseline  but
Supervised | AID 91.8 91.2 909 |91.0 |97.6 limited global

(ResNet-

feature
50) .

extraction.
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CNN Strong
) baseline  but
Baseline . L
Supervised | AID 91.8 91.2 909 |91.0 |97.6 limited global
(ResNet- feature
50) .
extraction.
Improved
spatial feature
traction;
ViT (Base) | Supervised | AID 93.4 93.0 927 |92.8 |98.3 extraction;
underperforms
in small-
sample cases.
Fine-tuning
ViT + Fine- ) NWPU- improves
d 94.2 93.8 93,5 193.6 |98.7
Tuning Supervise RESISC45 domain
adaptation.
Learns Dbetter
ViT + | Self- representations
Contrastive | Supervised without labels;
. . AID 96.8 96.4 96.0 [96.2 |994
Learning (SimCLR- handles class
(Proposed) | style) imbalance
effectively.
Hybrid Combines
CNN-VIT | ¢ e local (CNN)
with . UCM 95.6 95.2 948 |195.0 [99.1 and global
) Supervised .
Contrastive (ViT) features
Learning effectively.
Table 1. Remote Sensing Image Scene Classification analysis.
. ) I t .
Metric Best Performing Model Or:ep rr(]);/aesrgleige Key Insight
Accuracy ViT + C(.)ntrastive + Multi- 1579 Self-supervised pre‘Frair.ling
Scale Fusion enhances feature generalization.
.. ViT + Contrastive + Multi- Reduces false positives in
Precision ) +6.1% ..
Scale Fusion similar land cover types.
e — — - p
Recall ViT C(')ntrastwe Multi 16.1% Effectively detects diverse scene
Scale Fusion types.
Fl-Score ViT + C(.)ntrastive + Multi- 16.1% Balaflced improvement in all
Scale Fusion metrics.
Table 2. Comparative analysis.
CONCLUSION

In this work, a two-stage end-to-end framework named ViT CL is proposed. The framework combines the ViT

model with supervised contrastive learning and gives full play to the advantages of the two so that it can further
improve the scene classification. The backbone ViT of this framework can capture long-range dependencies
among patches via a self-attention mechanism. And the proposed joint loss function composed of cross entropy
loss and supervised contrast loss can help the model learn more robust and discriminating semantic features.
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Besides, to avoid time-consuming parameter tuning, a two-stage fine tuning is employed to ensure the joint loss
function can show its best performance. ViT-CL has been evaluated on three public remote-sensing image
datasets, and the experimental results demonstrate the effectiveness in improving the overall accuracy of scene
classification, compared to some classical CNN-based methods and improved ViT-based models. Moreover,
with the ablation experiment, how the two-stage joint fine-tuning framework improves the performance of scene
classification is discussed and it concluded that both “two-stage” and “joint” are necessary. In the future, we
will employ unsupervised contrast learning or data enhancement strategies to build a scenario classification
framework with lower time consumption and better performance.

Furthermore, these objects are distributed in all directions of the image. The coexistence and dispersed
distribution of multiple ground objects bring challenges to scene classification. So capturing global long-range
interactions for these ground objects has vital practical significance in scene classification. future, we will
employ unsupervised contrast learning or data enhancement strategies to build a scenario classification
framework with lower time consumption and better performance.
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