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VISIONGUARD- Object Detection In Adverse Weather 

Conditions With Health Monitoring 

Abstract - Driving in bad weather like rain, fog, or low light 

often makes it hard for traditional vehicle detection systems to 

work effectively. To tackle this, we introduce VisionGuard—a 

smart solution that combines advanced object detection with real-

time driver health and drowsiness monitoring. Powered by 

YOLOv8 and trained with the ACDC dataset, it’s built to handle 

tough visual conditions. It also uses ultrasonic and infrared 

sensors to improve how it sees the environment. On the inside, it 

tracks vital signs like heart rate, oxygen levels, and body 

temperature through wearable sensors, while keeping an eye on 

signs of fatigue using facial landmarks and blink detection. With 

over 95% detection accuracy, VisionGuard brings together deep 

learning, sensor fusion, and health monitoring into one system—

making roads safer by looking out for both what’s outside the 

vehicle and how the driver is doing. 

Keywords— Autonomous Vehicles, Object Detection, 

YOLOv8, Deep Learning, Health Monitoring, Drowsiness 

Detection, Sensor Fusion, Adverse Weather. 

I. INTRODUCTION 

Autonomous Vehicles (AVs) and Advanced Driver 
Assistance Systems (ADAS) are transforming modern 
transportation by enhancing road safety and driving 
efficiency. These systems depend on real- time object 
detection, which remains a challenge under adverse weather 
conditions such as rain, fog, snow, and low light. 
Conventional vision-based methods often fail in such 
scenarios due to poor visibility and sensor limitations, 
affecting detection reliability and overall safety. To address 
these issues, this study presents VisionGuard, a robust system 
combining YOLOv8, a state-of-the-art deep learning model, 
with sensor fusion techniques using ultrasonic and infrared 
(IR) sensors. Transfer learning on the ACDC dataset ensures 
improved detection in challenging weather scenarios[1]. The 
sensor fusion strategy overcomes the limitations of single-
sensor systems by leveraging complementary data, enabling 
accurate detection even in low-visibility environments. In 
addition to object detection, VisionGuard integrates a smart 
health monitoring module that tracks vital signs such as heart 
rate, SpO₂, and body temperature using wearable sensors[22]. 
A real-time drowsiness detection system analyzes facial 
landmarks and eye-blink patterns to detect fatigue and 

inattention. Together, these modules enhance both 
environmental perception and driver safety. Extensive testing 
under various conditions showed a mean average precision 
(mAP) above 95%, validating the system’s reliability. 
VisionGuard offers a scalable and intelligent framework for 
autonomous driving by integrating deep learning, multi-
sensor fusion, and physiological monitoring, paving the way 
for safer and more resilient transportation systems[22]. 

II. BACKGROUND 

The primary challenge addressed in this project is the 

degradation in computer vision-based vehicle detection 

systems under adverse weather conditions and health 

monitoring of the driver. Traditional systems struggle with 

reduced visibility from rain, fog, snow, low-light condi- tions, 

and visual distortions and does not provide an option for 

monitoring of health and real time drowsiness detection. These 

environmental challenges, combined with camera lens 

obstruction and variable lighting, significantly impact 

detection accuracy. Traditional object detection systems tend 

to work well in favorable conditions, but their performance 

drops significantly in adverse weather. Rain can blur the 

camera lens, fog limits how far systems can see, and snow can 

obscure road signs and obstacles entirely. In low-light 

conditions or at night, visual inputs become less reliable due 

to glare, shadows, and reflections. These challenges make it 

difficult for conventional vision-based systems to maintain 

consistent accuracy. On top of that, many road accidents are 

caused not just by external hazards but also by internal factors 

like driver drowsiness or sudden health issues. 

To address these concerns, recent research has focused on 

improving detection in complex environments. Notably, Garg 

et al. introduced a method to generate synthetic training data 

using light transport principles [15], which eliminates the need 

for manual data labelling [1]. Models like Faster R-CNN, 

YOLOv7, and especially YOLOv8 have been tested in these 

settings [3], with YOLOv8 showing strong results in adverse 

weather. Alongside this, machine learning models such as 

Logistic Regression and Random Forest [27] have been used 

to classify human vital signs. New datasets like ACDC and 
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DAWN [1] are also enabling better training and testing of 

detection systems in difficult conditions. To gauge 

performance, researchers rely on standard metrics such as 

Intersection over Union (IoU), mean average precision 

(mAP), precision, and F1 score. These metrics help quantify 

how well a model performs, particularly in visually degraded 

settings like fog or heavy rain where detection accuracy 

usually declines. This project builds on these insights by 

combining YOLOv8 with synthetic and real-world data to 

create a more resilient object detection system. It not only 

improves the system’s ability to recognize objects in poor 

visibility but also monitors the driver’s vital signs and 

alertness in real time. By unifying environmental awareness 

with driver health monitoring, the system aims to provide a 

safer and smarter solution for autonomous and assisted 

driving. 

III. OBJECTIVES 

The goal of this project is to build a fully integrated system 

that can perform reliable, real-time vehicle detection and 

obstacle avoidance even in difficult weather conditions, while 

also monitoring the driver's health using real-time drowsiness 

detection and vital sign analysis. These objectives cut across 

the software, hardware, and mobile components of the 

system, ensuring a holistic approach to safety. On the 

software side, the system is centred around the YOLOv8 deep 

learning model, which is deployed and optimized to run at 

speeds of at least 30 frames per second to support real-time 

detection. Special attention is given to  

ensure high performance in conditions like fog, rain, and 

snow by incorporating sensor fusion algorithms and transfer 

learning from pretrained YOLOv8 models on datasets like 

COCO. Alongside object detection, a drowsiness detection 

module uses an inward-facing camera to analyze facial 

landmarks and eye movements. It tracks indicators such as 

eye aspect ratio and blink rate through lightweight AI models 

like SVMs and CNNs to detect signs of fatigue and alert the 

driver accordingly. Complementing this, the system includes 

a health monitoring component that gathers vital signs like 

heart rate, SpO₂, and body temperature through wearable or 

embedded sensors. These readings are then processed by 

machine learning models such as Random Forest and Neural 

Networks to detect anomalies and send timely alerts. All these 

modules run on edge devices using optimized frameworks 

like TensorFlow Lite and OpenVINO, enabling fast, low-

latency performance suitable for real-time driving scenarios. 

From a hardware perspective, the system integrates multiple 

ultrasonic and heart rate sensors for full-range proximity 

awareness and vital signs tracking. An infrared sensor array 

is used to ensure performance in low-light conditions. These 

sensors are fused with camera data to create a more complete 

understanding of the surroundings, with fault-tolerant 

mechanisms built in to maintain operation during sensor 

failures. The detection system is designed to cover up to 50 

meters with at least 80% reliability. The control system relies 

on an Arduino-based microcontroller that processes sensor 

data in real time, manages communication between modules, 

and provides responsive motor control. Emergency override 

mechanisms are included, and the system is designed to 

operate with less than 10 milliseconds of processing delay. A 

fully functional prototype vehicle is developed to bring all 

components together. This scaled model supports real-world 

testing and simulation-based validation, with a modular build 

that ensures easy maintenance and a runtime of at least four 

hours on a full charge. To support remote access and control, 

the system includes mobile integration via a Bluetooth-based 

communication protocol. This setup supports real-time data 

streaming, manual override options, and secure data 

transmission with a latency ceiling of 100 milliseconds. The 

accompanying mobile app features an intuitive interface, live 

video feed, system status monitoring, and customizable alerts, 

giving users complete control and visibility over the vehicle’s 

operations. Finally, the system's performance is evaluated 

based on specific goals: achieving at least 95% object 

detection accuracy, maintaining 80% minimum sensor 

reliability, and processing input at 30 frames per second with 

a maximum end-to-end latency of 200 milliseconds. To 

validate these goals, a comprehensive testing framework is 

established, including simulated weather environments, 

automated test cases, and benchmark systems. Detailed 

documentation and quality assurance processes are also put 

in place to ensure the system performs reliably across various 

real-world scenarios. 

IV. PROTOTYPE 

 

The prototype developed for the AI-based Vehicle Safety 

System brings together both hardware and software 

components to simulate a real-world autonomous vehicle 

solution. It demonstrates the integration of object detection, 

drowsiness monitoring, health tracking, sensor fusion, and 

obstacle avoidance—all operating effectively across varying 

environmental conditions. 

The hardware is built around a compact, miniature vehicle 

model equipped with key components to ensure autonomous 

operation. A Bluetooth module (HC-05) is used to enable 

wireless communication between the vehicle and a mobile 

application, allowing for real-time control and data exchange. 

Ultrasonic sensors are mounted for obstacle detection, while 

infrared (IR) sensors assist in detecting objects at close range, 

especially in narrow or dark spaces. The prototype includes 

MAX30100 sensors for tracking physiological parameters 

like heart rate and SpO₂, effectively functioning as a wearable 

pulse oximeter. Movement is powered by DC motors 

connected to an L298N motor driver module, allowing the car 

to move forward, backward, and make turns. A rechargeable 

lithium-ion battery supplies power to the entire setup, 

ensuring uninterrupted operation during tests. 

Fig.1 Prototype Model 

http://www.ijsrem.com/
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On the software side, the system processes sensor data, 

performs object detection using YOLOv8, and controls 

vehicle navigation. YOLOv8 has been trained on a custom 

dataset optimized for different weather scenarios, with 

preprocessing techniques like image normalization and noise 

reduction applied to improve accuracy. A custom REST API 

bridges the mobile camera feed with the detection system, 

enabling real-time video processing with low latency. The 

system is designed to work across multiple mobile devices, 

employing compression to conserve bandwidth. Two 

operational modes are supported: in manual mode, users can 

control the vehicle through a mobile app interface using 

Bluetooth, while in automatic mode, the vehicle navigates 

autonomously by combining YOLOv8 detection with data 

from ultrasonic sensors. Sensor fusion plays a key role here, 

reducing false positives and increasing detection reliability by 

merging visual and proximity data. 

Fig 2 Circuit Diagram of Object Detection Model 

Mechanically, the prototype is built on a lightweight but 

sturdy chassis that holds all components securely during 

movement. Four DC motors are connected to independent 

wheels for accurate and responsive control, with front wheels 

linked to a motorized steering system. The motor driver 

circuit distributes power effectively, with a voltage regulator 

maintaining consistent output from the battery. Sensor 

integration is thoughtfully arranged: ultrasonic sensors are 

placed at the front to detect obstacles in foggy conditions, 

while IR sensors are positioned on the sides to prevent the 

vehicle from veering off course. MAX30100 sensors are 

embedded in wearable accessories like watches or gloves to 

monitor the driver’s vitals in real time. 

For communication, the HC-05 module ensures smooth 

wireless interaction between the vehicle and mobile app using 

the Serial Port Profile (SPP) protocol. Movement commands 

sent from the app are processed by an Arduino 

microcontroller, which directs the vehicle accordingly. This 

Arduino-based controller serves as the brain of the system, 

handling data from sensors and enabling both manual and 

autonomous operation. A decision-making algorithm 

interprets the fused data to navigate around obstacles in real 

time. Power management is also a critical part of the design. 

The lithium-ion battery is selected for its long runtime and is 

supported by smart power distribution. Efficiency is 

maximized through low-power modes and intelligent motor 

activation, which conserves energy when the vehicle is idle. 

The prototype offers two modes of operation. In manual 

mode, users steer the vehicle directly through the mobile 

interface. In automatic mode, the vehicle navigates on its 

own, adjusting its path based on sensor input and object 

detection results. To ensure reliability, extensive testing and 

optimization were carried out. Each hardware component—

motors, sensors, and the Bluetooth module—was tested 

individually before being integrated into the full system. 

Integration testing ensured  

Fig 3 Circuit Diagram of Vital Signs Detection 

 

that all parts worked together smoothly. Environmental 

testing included trials indoors and outdoors, under artificial 

fog, and in low-light scenarios. Challenges like signal drops 

and control glitches were identified and resolved during 

failure analysis and debugging sessions. Battery performance 

was also optimized to extend the system’s operating time. 

Fig 4 Circuit Diagram for Alert Mechanism 

The final prototype successfully demonstrates how intelligent 

sensing, machine learning, and real-time control can work 

together in a compact, mobile platform. Its responsive 

navigation and adaptability to adverse weather make it a 

promising candidate for real-world applications in vehicle 

safety systems. 

 

V. SYSTEM ARCHITECTURE 

 

The system architecture is designed to seamlessly bring 

together all the hardware and software components necessary 

for real-time object detection, driver monitoring, and 

autonomous navigation. It offers a structured framework that 

defines how data flows through the system—from sensing to 

processing to response—ensuring every module works in 

harmony to deliver consistent performance. At the input level, 

the system relies on a variety of sensors and a mobile camera 

to gather real-time data from the surrounding environment. 

Ultrasonic and infrared (IR) sensors provide critical 

proximity information for obstacle detection, while the 

MAX30100 sensor captures the driver’s vital signs such as 

heart rate and SpO₂. The mobile camera captures continuous 

video frames, which are analyzed by the YOLOv8 object 

detection model to identify and classify obstacles under 

various conditions. 

Once data is captured, it flows into the processing layer, 

where an Arduino microcontroller takes charge. This 

microcontroller is responsible for interpreting sensor inputs 

and managing motor control logic. It works alongside the 

YOLOv8 model, which processes video input and detects 

objects in real-time. A decision-making algorithm combines 

both visual and sensor data to decide how the vehicle should 

respond—for example, whether to stop, turn, or continue 

moving forward. This dynamic decision-making is key to 

http://www.ijsrem.com/
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enabling smooth and safe navigation, even in unpredictable 

environments. 

After processing, the appropriate commands are sent to the 

output layer. Here, motor drivers (L298N) translate the 

system’s decisions into physical movement—whether it’s 

moving forward, reversing, or turning. The Bluetooth module 

(HC-05) facilitates communication between the vehicle and a 

mobile application, allowing for remote monitoring and 

control by the user. To ensure reliable operation, a robust 

power management system is integrated into the design. A 

rechargeable lithium-ion battery supplies consistent power to 

all modules, while a voltage regulator ensures stable delivery 

to prevent sudden drops or failures. 

The data flow within the system follows a clear, logical 

progression. First, the sensors and mobile camera collect live 

data from the environment. Next, the microcontroller and 

detection model process this data. Based on the combined 

results, the decision-making algorithm determines the 

appropriate action. These instructions are then transmitted to 

the motor drivers, prompting the vehicle to execute the 

necessary maneuvers and navigate its surroundings safely. 

What makes this architecture particularly effective is its 

modularity and real-time responsiveness. Each component is 

designed to work independently yet in coordination, making 

the system easy to upgrade, maintain, and expand in future 

iterations. Real-time processing ensures the system can 

quickly adapt to changing road conditions or driver health, 

providing timely alerts or taking corrective actions. The use 

of multiple sensors and smart algorithms increases overall 

reliability, reducing the risk of errors and improving the 

safety and intelligence of the vehicle. 
 

VI. PERFORMANCE AND EVALUATION  

Evaluating the system's performance was a key step in 
validating its effectiveness in real-world conditions, especially 
when faced with adverse weather and driver-related risks. 
Several metrics were used to measure how well the AI-Based 
Vehicle Safety System performed in terms of detection, 
responsiveness, and reliability. To assess object detection, 
precision and recall were measured across a variety of weather 
conditions, offering a clear picture of how the YOLOv8 model 
handled rain, fog, and low-light environments. The system’s 
ability to respond quickly was also evaluated, with response 
time indicating how fast it could identify obstacles and take 
appropriate action. Beyond object detection, the system’s 
performance in identifying drowsiness and vital signs was 
closely monitored. Success rates for detecting driver fatigue—
specifically, eye closure and signs of sleepiness—were 
tracked, as well as the accuracy of health metrics like heart rate 
and SpO₂. Additional evaluation criteria included battery life, 
which reflected how long the system could operate on a single 
charge, and sensor reliability, which assessed how consistently 
the ultrasonic, infrared, and MAX30100 sensors performed in 
varied environments [24]. 

Testing was conducted in both controlled and real-world 
scenarios. In the lab, artificial fog, rain, and low-light settings 
were used to simulate harsh environmental conditions. 
Outdoor tests were carried out to see how the system handled 
natural weather variations and environmental unpredictability. 
Stress testing pushed the system to its limits by introducing 

multiple obstacles and shifting weather patterns, ensuring it 
could maintain performance even under demanding 
conditions. 

Fig 5. Evaluation Metrics of Object Detection Model 

The results were highly promising. The YOLOv8 model 
achieved an average object detection accuracy of 92% [27], 
while the drowsiness detection module maintained a precision 
of 91%. Vital sign classification performed even better, with a 
95% accuracy rate across testing conditions [15]. The system 
responded to obstacles within an average of 0.5 seconds, 
enabling real-time avoidance. Obstacle avoidance success 
rates were recorded at 95% in controlled environments and 
88% outdoors [27], showing the system's adaptability. 
Additionally, the battery provided up to four hours of 
continuous operation on a full charge, and sensors consistently 
achieved 98% accuracy in detecting nearby objects and 
environmental edges. Despite these successes, some 
challenges were identified [22]. Accuracy dropped slightly in 
heavy rain due to water interference with the sensors, and 
minor delays in system response were observed in very low-
light settings. These insights led to immediate improvements. 
Sensor housings were reinforced to better resist moisture, and 
extra lighting was added to boost visibility and detection 
accuracy during night-time or dim conditions. Overall, the 
performance evaluation confirmed that the system is both 
effective and reliable, delivering accurate real-time detection 
and monitoring even in complex and unpredictable 
environments. These results highlight the system’s potential 
for real-world deployment in autonomous and assisted driving 
applications. 

VII. RESULTS AND DISCUSSION 

Throughout the development and evaluation of the system, a 
range of performance metrics were used to assess its 
effectiveness in object detection, obstacle avoidance, health 
monitoring, and drowsiness detection—especially under 
adverse weather conditions. The system was tested in 
environments with fog, rain, snow, and low light to simulate 
real-world driving challenges and ensure robustness and 
reliability. One of the primary goalLs was achieving accurate 
vehicle detection, even in difficult visual conditions. The 
YOLOv8 model, trained using the ACDC dataset, performed 
consistently across varied scenarios. It achieved a strong mean 
average precision (mAP) of 95%, with accurate bounding 
boxes around detected vehicles—crucial for real-time 
decision-making and navigation in autonomous 
systems[15][16][30]. 

   

Fig 6 Results of Object Detection Model 

http://www.ijsrem.com/


   INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

            VOLUME: 09 ISSUE: 07 | JULY - 2025                                   SJIF RATING: 8.586                                        ISSN: 2582-3930                                                                                                                                               

© 2025, IJSREM      | www.ijsrem.com                        DOI: 10.55041/IJSREM51444                                      |        Page 5 

Fig 7 Results of Drowsiness Detection 

The system also integrated real-time driver monitoring, 
capturing vital signs such as heart rate, oxygen saturation, and 
temperature using wearable sensors. These inputs were 
analyzed using machine learning models to detect anomalies, 
while a camera-based module monitored facial landmarks and 
blink patterns to identify drowsiness. Together, these features 
enabled timely alerts and helped prevent accidents related to 
health risks or fatigue. A major strength of the system lies in 
its real-time processing. It maintained a processing speed of 30 
frames per second (FPS) with minimal latency, enabling rapid 
obstacle detection and response. This responsiveness is critical 
for autonomous driving, where even small delays can 
compromise safety. The use of sensor fusion—combining 
ultrasonic and IR data with YOLOv8’s visual output—
improved accuracy and reduced false detections, particularly 
in low-visibility conditions [22][31]. 

Fig 8. Results of Human Vital Signs Detection 

Testing confirmed that the system could detect and avoid 
obstacles effectively, even when facing multiple moving 
objects or poor lighting. It also proved capable of tracking 
pedestrians, vehicles, and road structures simultaneously, 
maintaining high detection reliability without sacrificing 
performance. The adaptability of the system was further 
enhanced through advanced image preprocessing techniques, 
such as contrast enhancement and noise reduction, which 
allowed it to function well in foggy or snowy environments 
[21][24]. In terms of long-term performance, the system 
remained stable during extended operation, with no significant 
drop in accuracy or speed. This consistency makes it suitable 
for continuous use in real-world settings. Visual analysis tools 
such as confusion matrices and correlation plots further 
validated the system’s reliability, showcasing strong 
performance across all tested metrics. Overall, the proposed 
system successfully combines deep learning with 
physiological monitoring and sensor fusion to provide a 
comprehensive safety solution. Its ability to operate 
effectively under challenging weather conditions, detect 
multiple objects, and monitor driver state in real time makes it 
a promising candidate for next-generation autonomous 
vehicles and driver assistance systems. 

VIII. CONCLUSION 

 The AI-based vehicle safety system, utilizing YOLOv8, 
demonstrated strong detection capabilities with a mean 
average precision (mAP) exceeding 95% across diverse 
driving conditions. Despite its high accuracy, several 
challenges were observed, highlighting areas for further 
optimization. 

 

One of the primary limitations was its performance in 
adverse weather conditions, where fog, rain, and snow led to 
partial occlusions, causing occasional misclassifications. 
Similarly, low-light environments, including nighttime 
driving, reduced detection reliability despite preprocessing 
techniques such as histogram equalization. The system also 
encountered computational constraints when processing high- 
resolution video at 30 FPS, posing challenges for real-time 
applications on resource-limited edge devices. Sudden 
lighting variations, such as entering or exiting tunnels, 
occasionally triggered false positives, affecting consistency in 
dynamic environments. To enhance robustness and 
adaptability, future improvements should focus on expanding 
the dataset to include diverse weather scenarios and real-world 
driving data from multiple geographic locations. 
Implementing temporal tracking techniques, such as Kalman 
filtering and optical flow, can stabilize object detection across 
frames, reducing false positives and missed detections. Model 
optimization strategies, including lightweight YOLO variants, 
pruning, and quantization, can minimize computational load, 
facilitating efficient edge deployment. Additionally, 
integrating multimodal sensor fusion— combining camera 
data with LiDAR [10], radar, and infrared sensors—can help 
overcome the limitations of vision-based systems in poor 
visibility and lighting. Synthetic data generation simulating 
extreme weather conditions and complex road scenarios can 
further improve generalization. Real- time learning 
mechanisms should also be introduced, enabling dynamic 
adaptation based on operational feedback. Furthermore, 
incorporating real-time driver health monitoring and 
drowsiness detection is essential for holistic vehicle safety. 
Physiological signals such as heart rate, SpO₂, and temperature 
can be continuously analyzed using machine learning models 
to detect anomalies and alert in case of potential health risks. 
Simultaneously, drowsiness detection via facial landmark 
tracking and eye movement analysis can prevent fatigue-
related incidents. These human- centric safety layers, when 
combined with environmental perception, significantly 
enhance system resilience. 

Lastly, collaborative learning across connected vehicles 
can promote shared intelligence by aggregating anonymized 
driving and health data from various contexts. This collective 
knowledge enables continuous system improvement, leading 
to more reliable, adaptive, and intelligent vehicle safety 
solutions for the future of autonomous 
transportation[3][25][28]. 
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