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VLSI Implementation of Iris Localization Using Circular Hough Transform 

 

Abstract—Deep learning-based models such as the interactive 
variant of U-Net and deep multi-task attention networks, while 
powerful, are computationally intensive, require large-scale 
annotated datasets and involve complex parameter tuning—
factors that limit their practicality for fundamental tasks like 
edge detection. In contrast, classical methods such as Canny 
edge detection and the Circular Hough Transform offer 
efficient, robust and interpretable alternatives. Canny edge 
detection provides noise resilience, sub-pixel accuracy and thin 
edge localization, making it well-suited for object recognition 
and segmentation. The Circular Hough Transform is highly 
effective in detecting circular patterns with varying radii and 
orientations, finding broad applications in medical imaging, iris 
recognition, industrial inspection and robotics. These classical 
techniques continue to serve as essential tools for feature 
extraction, shape analysis and object tracking across diverse 
domains, especially where computational efficiency and 
reliability are paramount. 

 
Keywords - MATLAB, Xilinx Vivado, Gaussian Smoothing, 
Canny Edge Detection, Circular Hough Transform(CHT), Very 
Large Scale Integration(VLSI), Verilog HDL(Hardware 
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I. INTRODUCTION 

Biometric authentication has emerged as a cornerstone of 

modern security infrastructures, offering reliable and accurate 

means of personal identification. Among the suite of 

biometric modalities, iris recognition stands out due to the 

unique and stable nature of iris patterns [1][4]. In contrast to 

fingerprints, which may degrade over time or facial 

recognition, which is influenced by expression and aging, the 

iris remains largely unchanged throughout a person’s life. 

This inherent stability, combined with the high 

distinctiveness of iris patterns, positions iris recognition as a 

preferred choice for high-security applications such as 

national identification systems, border control, financial 

services and access management [7][25]. 

A pivotal component of iris recognition is iris segmentation 

[2], the process of isolating the iris region from a captured eye 

image. The accuracy of this step directly affects subsequent 

stages of feature extraction and pattern matching. However, 

segmentation is frequently challenged by factors including 

variable lighting, occlusions from eyelids or eyelashes, 

reflections and image noise [5][8][16]. These challenges 

necessitate the development of robust and efficient 

segmentation techniques that can maintain performance 

under non-ideal imaging conditions [10][15]. 

 

II. MOTIVATION 

Conventional iris segmentation algorithms, typically 

implemented in software, often rely on iterative and 

computationally intensive methods [14]. These approaches 

are not optimal for real-time applications, particularly when 

deployed on resource-constrained or embedded systems. 

Moreover, environmental factors such as uneven 

illumination, shadowing and motion blur further degrade 

segmentation accuracy [6][17]. 

To address these limitations, this work proposes a hardware-

accelerated iris segmentation technique combining Canny 

Edge Detection with the Circular Hough Transform (CHT) 

[18]. This method is tailored for implementation in VLSI 

(Very Large Scale Integration) hardware, facilitating real-

time operation while maintaining segmentation accuracy. 

The edge detection stage enhances boundary features and 

suppresses noise, while the CHT robustly detects circular 

structures corresponding to the iris and pupil boundaries 

[3][19]. Together, these algorithms offer a reliable and 

computationally efficient solution, suitable for challenging 

image conditions. 

III. PROPOSED SYSTEM 

The proposed system introduces a hardware-accelerated 

architecture for iris localization, specifically designed to 

support biometric authentication applications requiring real-

time performance and high computational efficiency. The 

focus is directed toward translating the iris segmentation 

pipeline into a VLSI-compatible architecture, with particular 

emphasis on implementation using Field-Programmable Gate 

Arrays (FPGAs) [12][14]. This approach enables parallel 

processing and low-latency operation, making it suitable for 

integration into embedded vision systems where speed and 

accuracy are critical [13][20]. 

The architecture consists of three primary image processing 

stages: Gaussian Smoothing, Canny Edge Detection and 

Circular Hough Transform—each designed to perform 

specific tasks in the iris localization pipeline [21][22]. These 

modules are implemented in Verilog HDL and simulated 

using Vivado Design Suite. The Gaussian Smoothing module 

is responsible for noise reduction, enhancing the quality of 

edge detection by smoothing out fine-grain artifacts in the 
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image [11]. The Canny Edge Detection module includes 

gradient calculation, non-maximum suppression and double 

thresholding with hysteresis tracking, ensuring robust and 

precise edge detection under varying illumination and noise 

conditions [23]. The processed edge image is then fed into the 

Circular Hough Transform module, which votes in parameter 

space to detect circular boundaries that correspond to the iris 

[25]. 

To enable FPGA-based simulation and testing, image data is 

first preprocessed and converted into a text format using 

MATLAB, then stored in Block RAM (BRAM). Each stage 

of the pipeline reads from and writes to separate BRAM 

blocks, enabling a modular and pipelined approach. Finite 

State Machines (FSMs) are used for control flow within each 

module, ensuring that the pipeline operates in a synchronized 

and deterministic manner.The FPGA implementation allows 

parallel data processing and hardware-level optimization, 

significantly reducing processing latency compared to 

software-based approaches. Simulation results validate the 

correctness of each module, with visual outputs confirming 

accurate iris boundary detection. The system’s ability to 

process image frames efficiently confirms its feasibility for 

real-time biometric systems such as access control, 

surveillance and identity verification. 

By leveraging the parallelism inherent in FPGA architectures, 

the proposed system bridges the gap between software 

simulations and high-performance embedded systems. This 

design lays the foundation for future ASIC implementation, 

aligning with the objectives of energy-efficient, scalable and 

real-time iris recognition systems. This effort is part of the 

broader national initiative under the “Chips to Startup” (C2S) 

program funded by MeitY, Government of India, which 

supports indigenous VLSI design and innovation. 

IV. BLOCK DIAGRAM 

The proposed VLSI architecture for iris localization using the 

Circular Hough Transform (CHT), as shown in Figure 1, is 

designed to efficiently detect iris boundaries in digital images 

by leveraging optimized hardware processing [12]. The 

process starts with converting a 320×240 input image into a 

binary text file using MATLAB, generating 76,800 pixel 

values (each 8-bit), which are then instantiated into RAM for 

initial storage [13]. To enhance edge detection accuracy, a 

Gaussian Smoothing Module applies a filter to reduce noise 

[11], improving feature clarity and the smoothed image is 

temporarily stored in Smoothed Image BRAM. The Canny 

Edge Detection Module processes this data to detect 

significant intensity changes, marking object boundaries, 

with results stored in Edge Image BRAM.  

 

Fig. 1: VLSI architecture of Iris localization using CHT 

The Circular Hough Transform Module then analyzes the 

edge-detected data, mapping it into a parameter space to 

identify circular features, particularly the iris boundary, by 

accumulating evidence over possible center coordinates and 

radii, with detected parameters stored in the Hough Output 

BRAM. A Txt File Module writes the processed CHT data, 

including detected circle parameters, to a text file for 

verification, further processing or visualization. Finally, the 

system generates an Output Image with the detected iris 

boundaries, making it suitable for biometric authentication 

and further analysis in identification systems. 

A. Gaussian Smoothing 

The Gaussian Smoothing Module, illustrated in Figure 2, 

plays a critical role in the preprocessing stage of the proposed 

architecture by reducing high-frequency noise and enhancing 

the overall quality of the input image prior to edge detection. 

It performs a Gaussian blur operation, wherein each pixel 

value is replaced by a weighted average of its neighboring 

pixels based on a Gaussian distribution. This process 

suppresses insignificant image details and emphasizes key 

features relevant to edge localization. 

 

Fig. 2: Block diagram of Gaussian smoothing 

The input image is initially stored in an Input Block RAM 

(BRAM), which provides structured access to pixel data. A 

line buffer is employed to hold multiple rows of the image 

concurrently, enabling efficient application of the Gaussian 

kernel across the pixel matrix [11][13]. The Gaussian kernel, 

implemented as a fixed-size convolution mask, assigns 

weights to neighboring pixels based on their Euclidean 

distance from the center pixel, with values following the 

Gaussian function. 

Convolution between the kernel and the buffered pixel data 

results in a smoothed image, where each output pixel reflects 

a noise-reduced, context-aware intensity. The filtered image 

is subsequently stored in an Output BRAM, ready for input 

to the edge detection module. This hardware-based 

implementation facilitates real-time image processing with 

minimal latency, making it suitable for high-performance 

http://www.ijsrem.com/
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embedded vision applications [12][20]. 

B. Canny Edge Detection 

The Canny Edge Detection Module, as represented in Figure 

3, is a crucial component in the proposed architecture for iris 

localization using the Circular Hough Transform, responsible 

for detecting edges in the preprocessed image to accurately 

identify the iris boundaries [23]. It operates through a 

structured sequence of steps that progressively refine the edge 

detection process, ensuring high precision and reliability. By 

analyzing intensity variations, the module effectively 

identifies significant edges while minimizing noise and false 

detections. This systematic approach enhances the accuracy 

of iris localization, forming a fundamental step in the overall 

biometric recognition process. 

 

Fig. 3: Block diagram of canny edge detection 

Gradient computation: 

The Canny Edge Detection process begins with gradient 

computation, where Sobel kernels are applied to calculate 

intensity changes in the image, as depicted in Figure 4. The 

gradient computation in the proposed architecture involves 

convolving the input image with two distinct Sobel kernels to 

obtain gradient values in the x and y directions, respectively.

 

Fig. 4: Gradient computation 

 This module is implemented using Multiply-Accumulate 

(MAC) units, which perform convolution operations by 

calculating the dot product of the Sobel kernels and the 

corresponding pixel neighborhood for each pixel in the 

image. The resulting gradient values represent the rate of 

intensity change along both axes. To optimize convolution 

efficiency, a sliding window approach is employed, where a 

3×3 window moves across the image, allowing MAC units to 

process pixel values with the Sobel kernels. A line buffer 

temporarily holds the necessary image data, ensuring that 

required pixel values are readily available for processing. 

These computed gradients form the foundation for 

subsequent calculations in the Canny Edge Detection process, 

playing a crucial role in determining gradient magnitude and 

direction, which are essential for edge refinement and 

thresholding. Accurate gradient computation directly impacts 

the quality of edge detection and, consequently, the precision 

of iris localization. The computed gradient values are stored 

in Block RAM (BRAM), which provides fast and efficient 

storage, ensuring quick data access for subsequent edge 

detection and transformation stages [11][23]. 

Let I(x,y) be the intensity of the image at pixel coordinates 

(x,y). Calculating the horizontal gradient 𝐺𝑥 and vertical 

gradient 𝐺𝑦 

𝐺𝑥 = I * 𝐾𝑥    (1) 

𝐺𝑦 = I * 𝐾𝑦    (2) 

Where, 

𝐺𝑥 and 𝐺𝑦 are horizontal and vertical gradients. 

𝐾𝑥 and 𝐾𝑦 are Kernels. 

Equations (1) and (2) compute the horizontal and vertical 

gradient by convolving with a pair of filters, as represented in 

Figure 4. 

Gradient magnitude: 

To compute the gradient magnitude, the absolute values of 

the horizontal and vertical gradients are first determined, 

ensuring a non-negative representation of edge strength [23]. 

The maximum and minimum of these absolute values help 

approximate the magnitude while indicating the dominant 

gradient direction, as illustrated in Figure 5. 

 

Fig. 5: Gradient Magnitude 

For hardware efficiency, bitwise shift operations replace 

division: the maximum value is right-shifted by 3 bits 

(divided by 8) and the minimum by 1 bit (divided by 2). This 

reduces computational complexity and conserves resources. 

The shifted values are then summed to produce the 

approximate gradient magnitude, which is clamped to 255 to 

remain within the 8-bit range. The result is stored in the 

gradient buffer, a critical memory component used for further 

stages like non-maximum suppression and edge tracking, 

ensuring accurate and high-performance edge detection. 

M(x,y) = √𝐺𝑥2 + 𝐺 2    (3) 

http://www.ijsrem.com/
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where, 

M(x,y) is magnitude 

Equation (3) computes the gradient magnitude at each pixel, 

as visualized in Figure 5. 

Gradient direction: 

The gradient direction provides critical information about 

edge orientation, which is essential for the accurate detection 

and localization of iris boundaries [23], as shown in Figure 6. 

This process involves computing the angle of the gradient 

vector at each pixel using the previously determined 

horizontal (𝐺𝑥) and vertical (𝐺𝑦) gradient components. 

 

Fig. 6: Gradient direction 

Initially, the algorithm checks if both Gx = 0 and Gy = 0. If 

true, the pixel is deemed to have no significant edge and a 

default direction value of zero is assigned in the direction 

buffer. For non-zero gradient values, the direction is 

quantized into one of four principal angles—0°, 45°, 90° or 

135°—to balance accuracy with hardware simplicity. 

● If Gx > 0 and Gy ≥ 0, the direction is 

assigned as 0°, indicating a horizontal edge. 

● If Gx ≤ 0 and Gy > 0, the direction is approximated 

as 45°, corresponding to a diagonal edge from the lower-left 

to the upper-right. 

● If Gx < 0 and Gy ≤ 0, the direction is set 

to 90°, representing a vertical edge. 

● If Gx <0 and Gy >0, the direction is classified as 

135°, denoting a diagonal edge from the upper-left to the 

lower-right. 

These discrete direction values are encoded and stored in the 

direction buffer for efficient access in subsequent processing 

stages such as non-maximum suppression and edge tracking 

by hysteresis. 

θ(x,y) = tan−1(𝐺𝑦/𝐺𝑥)    (4) 

where, 

θ(x,y) is direction 

Equation (4) computes the gradient direction at each pixel, as 

visualized in Figure 6. 

Non maximum suppression: 

The proposed architecture for the non-maximum suppression 

stage in the Canny edge detection algorithm is designed to 

enhance edge thinning, ensuring that only the most significant 

edges are preserved in the final image, as shown in Figure 7. 

 

Fig. 7: Non maximum suppression 

The process begins with an initial multiplexer that directs the 

input gradient magnitude data from the edge detection stage 

into the appropriate channels, selectively routing data to the 

comparator based on gradient direction to ensure correct 

neighboring pixel comparisons. The core component, the 

comparator, evaluates the gradient magnitudes of the current 

pixel against its neighbors along the gradient direction, 

determining whether the current pixel is a local maximum. 

Following this, a second multiplexer channels the data based 

on the comparison results, allowing only potential local 

maxima to proceed while suppressing non-maximum pixels 

[23]. An equality checker then performs the final validation 

step, ensuring that the current pixel’s gradient magnitude 

equals the maximum value determined by the comparator, 

thereby retaining only true edge pixels. This architecture, 

utilizing multiplexers, comparators and an equality checker, 

effectively thins edges by accurately comparing gradient 

magnitudes and selectively preserving maximum values, 

enhancing the precision of edge detection and ensuring that 

only the most significant edges are maintained in the final 

output image. 

 

High and low threshold computation: 

Thresholds are computed in hardware (Figure 8) by first 

combining the gradient magnitudes with an XOR gate and 

then scaling them down via >>2 and >>1 bit-shifts. A selector 

picks the most significant scaled values, and a sorter arranges 

them so the high threshold can be set at a chosen percentile 

of the maximum gradient. Finally, a simple multiplier derives 

the low threshold as a fixed fraction of that high threshold. 

The entire datapath is fully pipelined—new gradient values 

can enter every clock cycle, with only a few cycles of fixed 

latency—ensuring continuous, high-throughput operation. 

Because all operations are fixed-point combinational logic, 

the design occupies minimal FPGA resources (LUTs and 

registers) and avoids the power and area overhead of iterative, 

http://www.ijsrem.com/
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memory-based methods. Control registers allow the high-

threshold percentile and low-threshold fraction to be updated 

at runtime, enabling adaptive threshold tuning under varying 

image conditions. This efficient, low-latency pipeline 

delivers precise thresholds without any software intervention, 

making it ideal for real-time embedded edge detection [14]. 

 

Fig. 8: High and low threshold computation 

In the edge detection process, thresholding is applied to the 

gradient magnitude  to classify pixels into three categories: 

● Strong Edges: Pixels for which  are considered 

strong edge pixels. 

● Weak Edges: Pixels with gradient magnitudes such 

that  are classified as weak edges. 

● Non-Edges: Pixels where  are treated as non-edge 

pixels and are discarded. 

Hysteresis thresholding: 

Hysteresis thresholding is an essential step for refining edge 

detection results, ensuring the retention of meaningful edges 

while eliminating noise, as shown in Figure 9. 

 

Fig. 9: Hysteresis thresholding 

The architecture comprises two primary components: the 

Comparator (CMP) block and the Multiplexer (MUX) block. 

The CMP block classifies pixels based on their gradient 

magnitudes by comparing each pixel against two predefined 

thresholds: a high threshold (TH) and a low threshold (TL). 

Pixels with gradient magnitudes above TH are classified as 

strong edges, while those below TL are discarded as non-

edges and those between TH and TL are marked as potential 

weak edges. The MUX block then performs edge tracking by 

hysteresis, evaluating the connectivity of weak edge pixels to 

strong edge pixels [18][24]. A weak edge pixel is retained 

only if connected to a strong edge pixel; otherwise, it is 

discarded. This process ensures the continuity of edge 

contours, which is crucial for accurate iris localization by 

preserving significant edges necessary for detecting the 

circular boundaries of the iris. By implementing this 

architecture, the system ensures precise and reliable edge 

detection, leading to improved iris localization using the 

Circular Hough Transform. 

C. Circular Hough Transform 

The VLSI architecture for the Circular Hough Transform 

(CHT) is designed to efficiently detect circular features in 

digital images using specialized hardware modules, as shown 

in Figure 10. The algorithm transforms edge points in the 

image space into a parameter space, wherein circular patterns 

emerge as distinct peaks. For each edge point  in the edge-

detected image, the architecture iteratively explores 

combinations of potential circle parameters—center 

coordinates  and radius . Each combination is evaluated using 

the circle equation: 

(x - 𝑎)2 + (y - b)2 = 𝑟2    (5) 

Equation (5) represents a circle centered at a radius.  

The CHT pipeline comprises several key stages: edge 

detection preprocessing, parameter space generation, 

accumulator voting, peak detection and circle validation. 

 

Fig. 10: Block diagram of Circular Hough Transform(CHT) 

In the proposed hardware architecture, edge pixels are first 

extracted from the input image and forwarded to the radius 

and center calculation modules. The radius calculation 

module generates a range of possible radii based on 

application-specific constraints. The center calculation 

module computes potential circle centers through 

trigonometric operations, leveraging arithmetic components 

such as adders, multipliers and CORDIC (Coordinate 

Rotation Digital Computer) units for efficient sine and cosine 

evaluations [19].The voting module utilizes these parameters 

to update a three-dimensional accumulator array that 

represents the space. Each cell in this array stores the vote 

count corresponding to the likelihood of a circle passing 

through the given parameters [3]. After voting, the peak 

detection module identifies local maxima using comparators 

and thresholding, pointing to probable circle candidates [25]. 

Subsequently, the circle validation module refines these 

results by applying constraints such as minimum vote 

thresholds and geometric consistency to eliminate false 

positives. This architecture achieves parallel and high-speed 

processing suitable for real-time applications, making it ideal 

for integration into FPGA and ASIC-based embedded vision 

systems. 

V. EXPERIMENT RESULTS 

The proposed architecture was modeled in Verilog and 

simulated using Xilinx Vivado Design Suite to validate the 

functionality and performance of the Canny Edge Detection 

module [13][21]. The input images were preprocessed using 

MATLAB and stored in Block RAM (BRAM) for use during 

simulation. The image used for testing was of resolution 

http://www.ijsrem.com/
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320×240 and represented as an 8-bit grayscale format. 

A. Simulation Setup: 

The simulation environment was configured using: 

● Vivado 2023.1, targeting a Xilinx Artix-7 FPGA 

● Verilog HDL for hardware module implementation 

● MATLAB for image-to-text conversion and result 

visualization 

B. Gaussian Smoothing Results 

The Gaussian Smoothing module successfully applied a 3×3 

kernel across the image to reduce high-frequency noise [11]. 

This improved the clarity of edge details for the subsequent 

processing stage. 

 

Fig. 11: Outputs of Grayscale and Gaussian smoothing. 

C. Canny Edge Detection Results 

The Canny module processed the smoothed image through 

multiple stages including: 

● Gradient Computation using Sobel kernels 

● Gradient Magnitude & Direction estimation 

● Non-Maximum Suppression 

● Hysteresis Thresholding 

Each intermediate result was validated via output files and the 

final edge-detected image showed clear boundary formation 

suitable for further processing with Circular Hough 

Transform. 

 
(a)Gradient Direction 

 
(b)Gradient Magnitude 

 
(c)Non-Maximum 

Suppression 

 
(d)Edge Detection 

Fig. 12: Outputs of Canny edge detection 

D. Circular Hough Transform (CHT) Results 

The edge-detected image from the Canny module was then 

processed by the Circular Hough Transform module, which 

was implemented using a voting-based algorithm tailored for 

hardware efficiency [23]. 

 

 

Fig. 13: Output of  Circular Hough Transform 

E. Summary 

Experimental validation shows our hardware pipeline 

(Gaussian smoothing, Canny edge detection and Circular 

Hough Transform) accurately and efficiently detects iris 

boundaries, paving the way for full biometric integration 

[18]. 

VI. CONCLUSION 

This project demonstrates the successful design and 

implementation of a robust and efficient iris segmentation 

and localization system, combining advanced image 

processing techniques with VLSI-based hardware 

acceleration to meet the demands of real-time biometric 

authentication. The integration of Canny Edge Detection and 

Circular Hough Transform in the MATLAB environment 

[18][23] enabled precise extraction of iris boundaries, even 

under challenging imaging conditions. Transitioning the 

 
(a)Grayscale image 

 
(b)Gaussian Smoothing 

 
(a)Circular Hough 

Transform 

 
(b)Localized Iris 
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algorithm to a VLSI-compatible architecture targeting 

FPGAs and ASICs significantly improved processing speed, 

power efficiency and scalability [9][22]. The proposed 

hardware design not only supports accurate and high-speed 

iris recognition but also ensures resilience to noise, occlusion 

and illumination variations, making it highly suitable for 

embedded security applications [6][24]. By bridging 

software-level algorithm development with hardware-level 

optimization, this work provides a scalable solution for next-

generation biometric systems, paving the way for real-time 

deployment in critical security domains such as access 

control, identity verification and surveillance . Future work 

will explore full-system integration, including on-chip 

feature extraction and classification, to further enhance the 

autonomy and applicability of biometric recognition systems 

in real-world environments. 

VII. REFERENCES 
 

[1] Caiyong Wang, Muhammad. J, Wang. Y and Zhenan Sun (2020), 

‘Towards Complete and Accurate Iris Segmentation Using Deep Multi- Task 

Attention Network for Non-Cooperative Iris Recognition’, in IEEE 

Transactions on Information Forensics and Security, Vol.15, pp. 2944- 2959. 

[2] Caiyong Wang, Wang. Y, Boqiang Xu, Yong He, Zhiwei Dong and 

Zhenan Sun (2020), ‘A Lightweight Multi-Label Segmentation Network for 

Mobile Iris Biometrics’, ICASSP 2020 - 2020 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), 

Barcelona, Spain, pp. 1006-1010. 

[3] Chia T. Chou, Sheng-Wen Shih, Wen-Shiung Chen, Victor W. 

Cheng and Duan-Yu Chen, (2010), ‘Non-Orthogonal View Iris Recognition 

System’, in IEEE Transactions on Circuits and Systems for Video 

Technology, Vol. 20, No. 3, pp. 417-430. 

[4] Chun-Wei Tan and Ajay Kumar, (2012), ‘Unified Framework for 

Automated Iris Segmentation Using Distantly Acquired Face Images’, in 

IEEE Transactions on Image Processing, Vol. 21, No. 9, pp. 4068-4079. 

[5] Ganeeva.Y and Myasnikov. E, (2020), ‘Using Convolutional Neural 

Networks for Segmentation of Iris Images’, 2020 International Multi- 

Conference on Industrial Engineering and Modern Technologies 

(FarEastCon), Vladivostok, Russia, pp. 1-4.. 

[6] Haibin Cai, Bangli Liu, Jianhua Zhang, Shengyong Chen and 

Honghai Liu, (2017), ‘Visual Focus of Attention Estimation Using Eye 

Center Localization’ in IEEE System Journal, VOL. 11, NO. 3, pp. 1320-

1325. 

[7] Hugo Proença, (2010), ‘Iris Recognition: On the Segmentation of 

Degraded Images Acquired in the Visible Wavelength’, in IEEE Transactions 

on Pattern Analysis and Machine Intelligence, Vol. 32, No. 8, pp. 1502-1516. 

[8] Jasem Rahman Malgheet, Noridayu BT Manshor, Lilly Suriani 

Affendey and Alfian Bin Abdul Halin, (2023), ‘MS-Net: Multi-Segmentation 

Network for the Iris Region Using Deep Learning in an Unconstrained 

Environment’, in IEEE Access, Vol. 11, pp. 59368-59385. 

[9] Jawad Muhammad, Caiyong Wang, Yunlong Wang, Kunbo Zhang 

and Zhenan Sun, (2023), ‘IrisGuideNet: Guided Localization and 

Segmentation Network for Unconstrained Iris Biometrics’, in IEEE 

Transactions on Information Forensics and Security, vol. 18, pp. 2723- 2736. 

[10]  Jinyu Zuo and Natalia A. Schmid, (2010), ‘On a Methodology for 

Robust Segmentation of Nonideal Iris Images’, in IEEE Transactions on 

Systems, Man and Cybernetics, Part B (Cybernetics), Vol. 40, No. 3, pp. 703-

718. 

[11]  Kai Wang and Yuntao Qian, (2011), ‘Fast and accurate iris 

segmentation based on linear basis function and RANSAC’, 18th IEEE 

International Conference on Image Processing, Brussels, Belgium, 2011, pp. 

3205- 3208. 

[12]  Kamil Grabowski and A. Napieralski (2011), "Hardware 

Architecture Optimized for Iris Recognition," in IEEE Transactions on 

Circuits and Systems for Video Technology, vol. 21, no. 9, pp. 1293-1303. 

[13]  Lihong Dai, Jinguo Liu, Zhaojie Ju and Yang Gao, (2020) “Iris 

Center Localization Using Energy Map With Image Inpaint Technology and 

Post-Processing Correction” in IEEE Access,Volume 8, pp. 16965-16978. 

[14]  Meng-ru, Lin, Shi-zhen , Huang, Fu-shan, Li, Rui-qi and Chen, 

Ruiqi. (2021). “Low-power Iris Recognition System Implementation on 

FPGA with Approximate Multiplier”. 32. pp. 115-127. 

[15]  Mohammed A. M. Abdullah, Satnam S. Dlay, W. L. Woo and J. 

A. Chambers, (2017), ‘Robust Iris Segmentation Method Based on a New 

Active Contour Force With a Noncircular Normalization’, in IEEE 

Transactions on Systems, Man and Cybernetics: Systems, vol. 47, no. 12,pp. 

3128-3141. 

[16]  Mousumi Sardar, Subhashis Banerjee and Sushmita Mitra, 

(2020), ‘Iris Segmentation Using Interactive Deep Learning’ in IEEE Access, 

Vol. 8,pp. 219322-219330. 

[17]  Rongnian Tang (2007), ‘An effective iris location method with 

high robustness’, Xi’an Jiaotong University, School of Electronics and 

Information Engineering, 28 Xianning West Road, Xi’an 710049, P.R. China 

Optica Applicata, Vol.XXXVII, No. 3, pp. 295-303. 

[18]  Samir Shah and Arun Ross, (2009), ‘Iris Segmentation Using 

Geodesic Active Contours’ in IEEE Transactions on Information Forensics 

and Security, Vol. 4, No. 4, pp. 824-836. 

[19]  Seung-Jin Baek, Kang-A Choi, Chunfei Ma, Young-Hyun Kim 

and Sung-Jea Ko, (2013) ‘Eyeball Model-based Iris Center Localization for 

Visible Image-based Eye-Gaze Tracking Systems’ in IEEE Transactions on 

Consumer Electronics, Vol. 59, No. 2, pp. 415-421. 

[20]  Van Thong Hu, Hyung-Jeong Yang, Guee-Sang Lee and Soo-

Hyung Kim, (2020), ‘Semantic Segmentation of the Eye With a Lightweight 

Deep Network and Shape Correction’ in IEEE Access, Vol. 8, pp. 131967- 

131974. 

[21]  Wei Zhang, Xiaoqi Lu, Yu Gu, Yang Liu, Xianjing Meng and 

Jing Li, (2019), ‘A Robust Iris Segmentation Scheme Based on Improved U-

Net’ in IEEE Access, Vol. 7, pp. 85082-85089. 

[22]  Xiaoqiang Wu and Long Zhao, (2019), ‘Study on Iris 

Segmentation Algorithm Based on Dense U-Net’ in IEEE Access, Vol. 7, pp. 

123959- 123968. 

[23]  Ying Chen, Wang, Zhuang and Yeron Wang, (2019), ‘An 

Adaptive CNNs Technology for Robust Iris Segmentation’ IEEE Access. 

Vol. 7, pp. 64517-64532. 

[24]  Yingzi Du, Emrah Arslanturk, Zhi Zhou and Craig Belcher, 

(2011), ‘Video-Based Noncooperative Iris Image Segmentation’ in IEEE 

Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), Vol. 

41, No. 1, pp. 64-74. 

[25]  Zhaofeng He, Tieniu Tan, Zhenan Sun and Xianchao Qiu, 

(2009), ‘Toward Accurate and Fast Iris Segmentation for Iris Biometrics’ in 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, 

No. 9, pp. 1670-1684. 

http://www.ijsrem.com/

