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Abstract : This project presents a new VLSI-optimized 

solution for enhancing data integrity through 2-bit error 

detection and 1-bit error correction. It consist some 

limitations in existing approaches our project aimed to 

advance the field by introducing an efficient algorithm in 

Very Large Scale Integration (VLSI) system. We have 

worked on studying the reason that causes errors in digital 

transmission process and receiving of data and developed 

a code in Very High Speed Integrated Circuit Hardware 

Descriptive Language (VHDL) that optimizes error 

detection and correction processes, addressing challenges 

in contemporary data storage and communication systems.        

  Xilinx ISE Design Suite 14.7 was used for 
performing the implementation of the code and observing 
the relevant output in order to know where the error bit 
was. Our project aimed to detect upto 2 bits and correct 1 
bit. Simulation results demonstrated that the proposed 
approach is capable of achieving high reliability digital 
systems such as flight critical systems in airplanes, space 
shuttles, and missile electronics systems.  

Key Words:  Error detection, error correction, VLSI, 
digital systems, data storage.  

  

1. INTRODUCTION   

  

In In the rich tapestry of digital communication and 
data transmission, the relentless pursuit of enhancing 
accuracy and reliability has spurred profound 
advancements in error detection and correction 
methodologies. This research endeavors to contribute to 
this narrative by delving into the historical context of 
prior studies and elucidating our hypothesis supported by 
an overview of the anticipated results.   

Our exploration into the realms of hamming code 
linear block code FPGA (Field-Programmable Gate 
Array) Architecture and VLSI (Very Large Scale 
Integration Language) has set the stage for a novel 
approach in 2-bit error detection and 1-bit error 
correction.   

Error detection and correction is widely used in many 
application fields especially in communication systems, 

satellite and space communications, network 
communications, cellular telephone networks, and any 
other of digital data communication. In addition, it is used 
in computing applications, data compression, and system 
coding. In noisy communication system the data 
transmission from transmitter to receiver suffer from 
errors. To overcome this problem and get error free data, 
there are number of error detection and correction 
techniques can be used. Linear block code (LBC) is one 
of the most common used error detection and correction 
methods. Hamming Code is a special case of LBC error 
detection and correction codes which is used to detect 
single or double bit errors and correct single bit errors that 
occur within data when it is transmitted from one device 
to another [1]. In traditional communication systems, the 
implemented hardware of error detection and correction 
part is designed to deals with fixed number of information 
data (bits) and has no ability to be reprogramed easily to 
meet other requirements of different communication 
system. To overcome this problem a flexible hardware 
system can be used such as Field programmable Gated 
Array (FPGA). Hamming code system based on FPGA is 
utilized in this work. Many sub-systems can implemented 
to consist the overall system hardware, each sub-systems 
run with its own program and need to be executed 
correctly, as well as, whenever data is stored or 
transmitted, there are chances that at least one or more bits 
will be an incorrect value. The transmission systems are 
exposing to get bits error values in either the instruction 
or data causing undesirable crashes or other system 
failures. Therefore, utilizing Hamming Code inside an 
embedded system is considered with high priority in 
modern industrial fields. 

 

2. METHODOLOGY –   
 

 The key to the Single bit error correction is the use of extra 

parity bits to allow the identification of a single error. Two 

methods (even parity, odd parity) for generating 

redundancy bits that Hamming code need it. Number of 

redundancy bits are generated (Check bits) is calculate 

according to (1). This redundancy bits depend on the 

number of information data bits . 
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(2r ) ≥ (k + r + 1)                                                         (1)  

where k is the data bits length, and r is the bits to find the 

check bits that will add to dataThe operation of hamming 

code extended can be summarize as following: a. Mark all 

bit positions that are powers of two as parity bits (positions 

1, 2, 4, 8, 16, 32, 64, etc.).  

b. All other bit positions are for the data to be encoded 

(positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc.).  

c. The last bit is added for Parity bit.  

d. Each parity bit calculates the parity for some of the bits 

in the code word. The position of the parity bit determines 

the sequence of bits that it alternately checks and skips.  

- Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, 

etc. (1, 3, 5, 7, 9, 11, 13, 15,...)  

- Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 

bits, etc. (2, 3, 6, 7, 10, 11, 14, 15, ...) 

 - Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 

bits, etc. (4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, ...) 

 - Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 

bits, etc. (8-15, 24-31, 40-47, ...) and so on for the position 

16 and 32 …etc. e. Set a Parity bit to 1 if the total number 

of ones in the positions it checks is odd (XOR operation 

between all bits) . Set a parity bit to 0 if the total number 

of ones in the positions it checks is even. f. To test packet 

data received, the XOR is applied on all bits to determine 

if there is any error in Parity bit; Parity bit is extracted; 

same algorithm is applied on rest bits to generate hamming 

code. g. If hamming code is zero and Parity bit is zero, 

then there are no error in received packet data. If hamming 

code is not zero and Parity bit is one, then there is one error 

in packet data and correction is capable by invert the bit 

location that pointed by hamming code value. If hamming 

code is not zero and Parity bit is zero, then there are two 

errors or even errors in packet data and cannot be 

corrected. 

 

 

 

 

  

 

Fig 1. Block diagram 

1.  

1. Decoder: 

 

a) The decoder receives input signals labeled 

as S(0) and S(1) 

b) Its purpose is to decode these signals, which likely 

represent encoded data or error-affected data. 

 

2. Check Bit Generator: 

a) This block generates check bits based on the received 

data. 

b) The check bits are calculated using Hamming code 

principles (XOR operations on specific data bits). 

c) The check bits are essential for error detection and 

correction. 

3. Syndrome Generator: 

a) The syndrome generator computes the syndrome 

(error pattern) based on the received data and the 

calculated check bits. 

b) The syndrome provides information about the 

presence and location of errors. 

4. Latches: 

a) These are memory elements that store intermediate 

data or signals. 

b) They likely hold data during the decoding process. 

 

5. Mux (Multiplexer): 

 

a) The multiplexer selects one of several input signals 

and routes it to the output. 
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b) It may be used to choose between different data     

paths or to select corrected data. 

 

6. Error Detector: 

a) The error detector examines the received data and the 

calculated check bits. 

b) If an error is detected (mismatch between received and 

calculated check bits), it triggers an error alert (labeled 

as ERRn). 

7. Error Corrector: 

a) The error corrector uses information from the latches 

and the error alert to correct detected errors. 

b) It modifies the received data to correct single-bit 

errors. 

8. Error Bit Decoder: 

 

a) This component ensures that the corrected data is now 

error-free. 

b) It may perform additional checks to validate the 

correctness of the corrected data. 

 

➢ SIGNIFICANCE OF HAMMING CODE: 

The selection of check bits (P1, P2, P4, P8, P16, and 

P32) follows a specific pattern based on their 

positions as powers of 2. These positions are chosen 

to ensure efficient error detection and correction. 

Here’s why: 

1. Position as Powers of 2: 

⚫ The check bits are placed at positions corresponding 

to powers of 2 (1, 2, 4, 8, 16, and 32). 

⚫ These positions allow us to cover different subsets 

of data bits in a systematic way. 

⚫ For example, P1 covers all bits with the least 

significant bit set (bit 1, bit 3, bit 5, etc.). 

2. Parity Calculation: 

⚫ Each check bit is calculated by performing an XOR 

operation over specific data bits. 

⚫ The XOR operation checks for parity (even or odd) 

among the relevant bits. 

⚫ By placing the check bits at powers of 2, we ensure 

that each data bit participates in the calculation of 

exactly one check bit. 

3. Efficient Error Detection and Correction: 

⚫ The chosen positions allow us to detect and correct 

single-bit errors efficiently. 

 

⚫ If an error occurs during transmission, the check bits 

will reveal the erroneous bit position.For example, if 

P1 is incorrect, we know that there’s an issue with the 

data bits at positions 1, 3, 5, 7, 9, 11, 13, or 15. 

4. Redundancy and Robustness: 

⚫ The redundancy introduced by the check bits helps in 

error correction. 

⚫ The more check bits we have, the better our ability to 

detect and correct errors. 

⚫ However, we strike a balance between redundancy 

and efficiency to minimize overhead. 

IMPLEMENTATION: 

Encoding (Adding Check Bits): 
1. Calculates the values of each check bit using XOR 

operations: 

2.  

P1 = XOR(D1, D3, D5, D7, D9, D11, D13, D15) 

P1 = D1 ⊕ D3 ⊕ D5 ⊕ D7 ⊕ D9 ⊕ D11 ⊕ D13 ⊕ 

D15 = 0 

P2 = XOR(D2, D3, D6, D7, D10, D11, D14, D15) 

P2 = D2 ⊕ D3 ⊕ D6 ⊕ D7 ⊕ D10 ⊕ D11 ⊕ D14 ⊕ 

D15 = 1 

P4 = XOR(D4, D5, D6, D7, D12, D13, D14, D15) 

P4 = D4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D12 ⊕ D13 ⊕ D14 ⊕ 

D15 = 0 

P8 = XOR(D8, D9, D10, D11, D12, D13, D14, D15) 

P8 = D8 ⊕ D9 ⊕ D10 ⊕ D11 ⊕ D12 ⊕ D13 ⊕ D14 

⊕ D15 = 1 

P16 = XOR(D16, D17, D18, …, D31) 

P16 = D16 (no XOR needed for P16; it’s the 16th data 

bit) = 1 

P32 = 0 (not present in the 16-bit data) 

Decoding:(Error Detection and Correction): 

Received Data (22 bits): D1 to D16 (16 data bits) + P1, 

P2, P4, P8, P16 (6 check bits) 

Received Check Bits: P1 = 0, P2 = 1, P4 = 0, P8 = 1, 

P16 = 1, P32 = 0 (not present in the 16-bit data) 

P1 = XOR(D1, D3, D5, D7, D9, D11, D13, D15) = 0 
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P2 = XOR(D2, D3, D6, D7, D10, D11, D14, D15) = 1 

P4 = XOR(D4, D5, D6, D7, D12, D13, D14, D15) = 0 

P8 = XOR(D8, D9, D10, D11, D12, D13, D14, D15) = 1 

P16 = D16 (no XOR needed for P16; it’s the 16th databit) 

= 1 

Compare the calculated check bits with the received check 

bits:  If any discrepancy is found, identify the erroneous 

bit position. 

Correct the error (if applicable):  If only one check bit is 

incorrect, flip the corresponding data bit. 

If more than one check bit is incorrect, the error is 

uncorrectable. 

Therefore, the corrected data bits are as follows: 

D1(1),D2(0),D3(0),D4(0),D5(1),D6(0),D7(0),D8(0), 

D9(1),D10(0),D11(0),D12(0),D13(0),D14(0),D15(0), 

D16(0). 

1. RESULTS /DISCUSSION: 

 

Fig 2. RTL view schematic 

 

Fig 3. Simulation Waveform 

 

 

3.  CONCLUSION: 

In conclusion, our VLSI-based error detection and 

correction system, leveraging Hamming code, represents 

a significant step toward ensuring data integrity in digital 

communication and storage. By combining principles 

from circuit design, digital communication, and error-

correcting codes, we’ve created a robust solution. 

However, ongoing research and real-world testing will be 

crucial to fine-tune the trade-offs between error correction 

capability, memory overhead, and practical 

implementation. As technology advances, our 

commitment to reliable data transmission remains 

unwavering, safeguarding critical systems across various 

domains. 
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