
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 1

VLSI-optimized Two-Bit Error Detection and One-Bit Error Correction

for Enhanced Data Integrity

Dr.R.K.Navandar1, Kalyani Awatade2, Gauri Ghadi3, Poonam Gaikwad4

1Dr. R. K. Navandar, Dept. Of ENTC, JSPM’s JSCOE, Pune, Maharashtra, India
2Kalyani Awatade , Dept. Of ENTC, JSPM’s JSCOE, Pune, Maharashtra, India

3Gauri Ghadi , Dept. Of ENTC, JSPM’s JSCOE, Pune, Maharashtra, India
3Poonam Gaikwad , Dept. Of ENTC, JSPM’s JSCOE, Pune, Maharashtra, India

Abstract : This project presents a new VLSI-optimized

solution for enhancing data integrity through 2-bit error

detection and 1-bit error correction. It consist some

limitations in existing approaches our project aimed to

advance the field by introducing an efficient algorithm in

Very Large Scale Integration (VLSI) system. We have

worked on studying the reason that causes errors in digital

transmission process and receiving of data and developed

a code in Very High Speed Integrated Circuit Hardware

Descriptive Language (VHDL) that optimizes error

detection and correction processes, addressing challenges

in contemporary data storage and communication systems.

 Xilinx ISE Design Suite 14.7 was used for
performing the implementation of the code and observing
the relevant output in order to know where the error bit
was. Our project aimed to detect upto 2 bits and correct 1
bit. Simulation results demonstrated that the proposed
approach is capable of achieving high reliability digital
systems such as flight critical systems in airplanes, space
shuttles, and missile electronics systems.

Key Words: Error detection, error correction, VLSI,
digital systems, data storage.

1. INTRODUCTION

In In the rich tapestry of digital communication and
data transmission, the relentless pursuit of enhancing
accuracy and reliability has spurred profound
advancements in error detection and correction
methodologies. This research endeavors to contribute to
this narrative by delving into the historical context of
prior studies and elucidating our hypothesis supported by
an overview of the anticipated results.

Our exploration into the realms of hamming code
linear block code FPGA (Field-Programmable Gate
Array) Architecture and VLSI (Very Large Scale
Integration Language) has set the stage for a novel
approach in 2-bit error detection and 1-bit error
correction.

Error detection and correction is widely used in many
application fields especially in communication systems,

satellite and space communications, network
communications, cellular telephone networks, and any
other of digital data communication. In addition, it is used
in computing applications, data compression, and system
coding. In noisy communication system the data
transmission from transmitter to receiver suffer from
errors. To overcome this problem and get error free data,
there are number of error detection and correction
techniques can be used. Linear block code (LBC) is one
of the most common used error detection and correction
methods. Hamming Code is a special case of LBC error
detection and correction codes which is used to detect
single or double bit errors and correct single bit errors that
occur within data when it is transmitted from one device
to another [1]. In traditional communication systems, the
implemented hardware of error detection and correction
part is designed to deals with fixed number of information
data (bits) and has no ability to be reprogramed easily to
meet other requirements of different communication
system. To overcome this problem a flexible hardware
system can be used such as Field programmable Gated
Array (FPGA). Hamming code system based on FPGA is
utilized in this work. Many sub-systems can implemented
to consist the overall system hardware, each sub-systems
run with its own program and need to be executed
correctly, as well as, whenever data is stored or
transmitted, there are chances that at least one or more bits
will be an incorrect value. The transmission systems are
exposing to get bits error values in either the instruction
or data causing undesirable crashes or other system
failures. Therefore, utilizing Hamming Code inside an
embedded system is considered with high priority in
modern industrial fields.

2. METHODOLOGY –

 The key to the Single bit error correction is the use of extra

parity bits to allow the identification of a single error. Two

methods (even parity, odd parity) for generating

redundancy bits that Hamming code need it. Number of

redundancy bits are generated (Check bits) is calculate

according to (1). This redundancy bits depend on the

number of information data bits .

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 2

(2r) ≥ (k + r + 1) (1)

where k is the data bits length, and r is the bits to find the

check bits that will add to dataThe operation of hamming

code extended can be summarize as following: a. Mark all

bit positions that are powers of two as parity bits (positions

1, 2, 4, 8, 16, 32, 64, etc.).

b. All other bit positions are for the data to be encoded

(positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc.).

c. The last bit is added for Parity bit.

d. Each parity bit calculates the parity for some of the bits

in the code word. The position of the parity bit determines

the sequence of bits that it alternately checks and skips.

- Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit,

etc. (1, 3, 5, 7, 9, 11, 13, 15,...)

- Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2

bits, etc. (2, 3, 6, 7, 10, 11, 14, 15, ...)

 - Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4

bits, etc. (4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, ...)

 - Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8

bits, etc. (8-15, 24-31, 40-47, ...) and so on for the position

16 and 32 …etc. e. Set a Parity bit to 1 if the total number

of ones in the positions it checks is odd (XOR operation

between all bits) . Set a parity bit to 0 if the total number

of ones in the positions it checks is even. f. To test packet

data received, the XOR is applied on all bits to determine

if there is any error in Parity bit; Parity bit is extracted;

same algorithm is applied on rest bits to generate hamming

code. g. If hamming code is zero and Parity bit is zero,

then there are no error in received packet data. If hamming

code is not zero and Parity bit is one, then there is one error

in packet data and correction is capable by invert the bit

location that pointed by hamming code value. If hamming

code is not zero and Parity bit is zero, then there are two

errors or even errors in packet data and cannot be

corrected.

Fig 1. Block diagram

1.

1. Decoder:

a) The decoder receives input signals labeled

as S(0) and S(1)

b) Its purpose is to decode these signals, which likely

represent encoded data or error-affected data.

2. Check Bit Generator:

a) This block generates check bits based on the received

data.

b) The check bits are calculated using Hamming code

principles (XOR operations on specific data bits).

c) The check bits are essential for error detection and

correction.

3. Syndrome Generator:

a) The syndrome generator computes the syndrome

(error pattern) based on the received data and the

calculated check bits.

b) The syndrome provides information about the

presence and location of errors.

4. Latches:

a) These are memory elements that store intermediate

data or signals.

b) They likely hold data during the decoding process.

5. Mux (Multiplexer):

a) The multiplexer selects one of several input signals

and routes it to the output.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 3

b) It may be used to choose between different data

paths or to select corrected data.

6. Error Detector:

a) The error detector examines the received data and the

calculated check bits.

b) If an error is detected (mismatch between received and

calculated check bits), it triggers an error alert (labeled

as ERRn).

7. Error Corrector:

a) The error corrector uses information from the latches

and the error alert to correct detected errors.

b) It modifies the received data to correct single-bit

errors.

8. Error Bit Decoder:

a) This component ensures that the corrected data is now

error-free.

b) It may perform additional checks to validate the

correctness of the corrected data.

➢ SIGNIFICANCE OF HAMMING CODE:

The selection of check bits (P1, P2, P4, P8, P16, and

P32) follows a specific pattern based on their

positions as powers of 2. These positions are chosen

to ensure efficient error detection and correction.

Here’s why:

1. Position as Powers of 2:

⚫ The check bits are placed at positions corresponding

to powers of 2 (1, 2, 4, 8, 16, and 32).

⚫ These positions allow us to cover different subsets

of data bits in a systematic way.

⚫ For example, P1 covers all bits with the least

significant bit set (bit 1, bit 3, bit 5, etc.).

2. Parity Calculation:

⚫ Each check bit is calculated by performing an XOR

operation over specific data bits.

⚫ The XOR operation checks for parity (even or odd)

among the relevant bits.

⚫ By placing the check bits at powers of 2, we ensure

that each data bit participates in the calculation of

exactly one check bit.

3. Efficient Error Detection and Correction:

⚫ The chosen positions allow us to detect and correct

single-bit errors efficiently.

⚫ If an error occurs during transmission, the check bits

will reveal the erroneous bit position.For example, if

P1 is incorrect, we know that there’s an issue with the

data bits at positions 1, 3, 5, 7, 9, 11, 13, or 15.

4. Redundancy and Robustness:

⚫ The redundancy introduced by the check bits helps in

error correction.

⚫ The more check bits we have, the better our ability to

detect and correct errors.

⚫ However, we strike a balance between redundancy

and efficiency to minimize overhead.

IMPLEMENTATION:

Encoding (Adding Check Bits):
1. Calculates the values of each check bit using XOR

operations:

2.

P1 = XOR(D1, D3, D5, D7, D9, D11, D13, D15)

P1 = D1 ⊕ D3 ⊕ D5 ⊕ D7 ⊕ D9 ⊕ D11 ⊕ D13 ⊕

D15 = 0

P2 = XOR(D2, D3, D6, D7, D10, D11, D14, D15)

P2 = D2 ⊕ D3 ⊕ D6 ⊕ D7 ⊕ D10 ⊕ D11 ⊕ D14 ⊕

D15 = 1

P4 = XOR(D4, D5, D6, D7, D12, D13, D14, D15)

P4 = D4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D12 ⊕ D13 ⊕ D14 ⊕

D15 = 0

P8 = XOR(D8, D9, D10, D11, D12, D13, D14, D15)

P8 = D8 ⊕ D9 ⊕ D10 ⊕ D11 ⊕ D12 ⊕ D13 ⊕ D14

⊕ D15 = 1

P16 = XOR(D16, D17, D18, …, D31)

P16 = D16 (no XOR needed for P16; it’s the 16th data

bit) = 1

P32 = 0 (not present in the 16-bit data)

Decoding:(Error Detection and Correction):

Received Data (22 bits): D1 to D16 (16 data bits) + P1,

P2, P4, P8, P16 (6 check bits)

Received Check Bits: P1 = 0, P2 = 1, P4 = 0, P8 = 1,

P16 = 1, P32 = 0 (not present in the 16-bit data)

P1 = XOR(D1, D3, D5, D7, D9, D11, D13, D15) = 0

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 4

P2 = XOR(D2, D3, D6, D7, D10, D11, D14, D15) = 1

P4 = XOR(D4, D5, D6, D7, D12, D13, D14, D15) = 0

P8 = XOR(D8, D9, D10, D11, D12, D13, D14, D15) = 1

P16 = D16 (no XOR needed for P16; it’s the 16th databit)

= 1

Compare the calculated check bits with the received check

bits: If any discrepancy is found, identify the erroneous

bit position.

Correct the error (if applicable): If only one check bit is

incorrect, flip the corresponding data bit.

If more than one check bit is incorrect, the error is

uncorrectable.

Therefore, the corrected data bits are as follows:

D1(1),D2(0),D3(0),D4(0),D5(1),D6(0),D7(0),D8(0),

D9(1),D10(0),D11(0),D12(0),D13(0),D14(0),D15(0),

D16(0).

1. RESULTS /DISCUSSION:

Fig 2. RTL view schematic

Fig 3. Simulation Waveform

3. CONCLUSION:

In conclusion, our VLSI-based error detection and

correction system, leveraging Hamming code, represents

a significant step toward ensuring data integrity in digital

communication and storage. By combining principles

from circuit design, digital communication, and error-

correcting codes, we’ve created a robust solution.

However, ongoing research and real-world testing will be

crucial to fine-tune the trade-offs between error correction

capability, memory overhead, and practical

implementation. As technology advances, our

commitment to reliable data transmission remains

unwavering, safeguarding critical systems across various

domains.

4. REFERENCE:

[1] Forouzan BA. Data Communication and Networking.

Fourth edition. McGrawHill Ltd. 2007: 267-299.

[2] St. Onge LM, Areibi S. VHDL for Digital Design.

Technical Report 2003-01P School of

engineering,university of Guelph, Canada. 2003.

[3] Perry DL. VHDL Programming by Example. Fourth

Edition. McGraw-Hill Ltd. 2002.

[4] Mohammed ZG, Hamdoon AMA, Aziz MS.

Scheduling lecturer system based on FPGA. IEEE

International Conference on Advances in Sustainable

Engineering and Applications (ICASEA). 2018: 54-58.

[5] Peckol JK. Embedded Systems a Contemporary

Design Tool. First Edition. 2007: 597-648.

[6] Mr. Ravindra H. Adekar , Mr. Dhananjay D.

Khumane., “Forward Error Correction Techniques Using

VLSI” , Sep-2012.

[7] Supraja,C.Kanmani,Dharani.N. ,“VLSI

Implementation of Error Detection and Correction Codes

for Space Engineering” , 2021.

[8] Vijayakumara Y , Byregowda B. ,“A VLSI

Implementation of hamming code algorithm using FPGA

architecture.” , 2020.

[9] K.C.Chang,“Digital Systems Design with VHDL and

Synthesis.” , 200.

http://www.ijsrem.com/

