
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51624 | Page 1

Vultrack- Vuinerability Tracking Scanner by Using Cyber Security

Author: Ratnala Naveen1 (MCA student), G.suvarna kumar 2 (Asst.Professor) 1,2 Department of Information

Technology & Computer Application

Andhra University College of Engineering, Visakhapatnam, AP.

Corresponding Author: Ratnala Naveen
(email-id: ratnalanaveen306@gmail.com)

ABSTRACT— This study introduces vulscan, a lightweight, browser-based application aimed at conducting basic security and

configuration checks on websites. in today’s digitally connected world, early-stage evaluation of web applications is essential to

detect security flaws and misconfigurations. built with the flask framework in python, vulscan allows users to input a website url

through an intuitive web interface, triggering backend analysis. the system examines http responses to evaluate the presence of

critical security headers, checks for missing or improperly configured elements, and identifies web forms with insecure submission

paths. it also includes ssl/tls certificate validation to assess the website’s encryption practices. the findings are compiled into a clear

and organized report, highlighting server details, absent headers, form vulnerabilities, and certificate status—all viewable in the

interface. vulscan provides a practical and efficient method for developers and system administrators to carry out initial security

reviews of web assets.

 KEYWORDS— WEB APPLICATION SECURITY, VULNERABILITY SCANNING, HTTP SECURITY HEADERS, SSL/TLS CERTIFICATE

VALIDATION, FORM SECURITY, WEB-BASED SECURITY TOOLS, PYTHON PROGRAMMING, FLASK FRAMEWORK

---------------------------------------*********************************--

I. INTRODUCTION

Web applications have become a fundamental part of the modern

digital ecosystem, supporting critical services in domains such as

finance, healthcare, education, and public administration. Their

increasing adoption has enabled organizations to offer efficient

and scalable solutions. However, this growing dependence has

simultaneously introduced a broader range of security risks.

Common vulnerabilities, including insecure HTTP headers,

improper SSL/TLS configurations, and vulnerable form handling

mechanisms, continue to be exploited, leading to data breaches,

service disruptions, and reputational damage.

Ensuring the security of web-based systems is a continuous and

multifaceted process. While comprehensive security solutions

such as penetration testing and dynamic analysis tools are

essential, they often demand substantial resources, time, and

expertise. These approaches are not always practical for early-

stage development or for quick assessments during frequent code

deployments. Additionally, performing manual checks using

individual command-line utilities can be inefficient and error-

prone, particularly when addressing multiple aspects of web

security.

To address this gap, there is a need for a lightweight and user-

friendly solution that facilitates the preliminary evaluation of

basic security configurations. Such a tool should enable

developers, security professionals, and system administrators to

identify common weaknesses efficiently, without the overhead

associated with full-scale security audits.

This paper presents VulScan, a web-based vulnerability scanning

tool designed to perform high-level assessments of web

applications. Built using the Flask framework, VulScan integrates

several key scanning functions into a unified interface. It checks

for missing or misconfigured HTTP security headers, detects

insecure form submissions, and validates SSL/TLS certificate

integrity. Through its accessible web interface, VulScan aims to

simplify the identification of foundational security flaws and

support the adoption of secure coding practices from the early

stages of development.

The remainder of this paper is organized as follows: Section II

reviews related research and tools relevant to web vulnerability

scanning. Section III outlines the design and implementation of

the VulScan system. Section IV details the methodology used to

evaluate the scanning modules. Section V discusses the results

obtained through practical testing. Finally, Section VI concludes

the paper and proposes directions for future improvement and

expansion.

II. Related work:

The domain of web application vulnerability assessment

encompasses a broad spectrum of tools and methodologies, each

designed to serve specific operational needs and technical skill

levels. These solutions range from comprehensive commercial

platforms to lightweight open-source utilities and web-based

diagnostic services. This section classifies and evaluates these

existing approaches in relation to VulScan’s goal of providing

accessible, preliminary web security assessments.

http://www.ijsrem.com/
mailto:ratnalanaveen306@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51624 | Page 2

A. Commercial Dynamic Application Security Testing (DAST)

Solutions

Enterprise-grade web application security tools such as Acunetix,

Burp Suite Professional, IBM AppScan, and Qualys Web

Application Scanning offer automated environments capable of

conducting deep vulnerability detection. These platforms

integrate features such as authenticated scanning, advanced report

generation, and seamless integration with development pipelines

through SDLC-compatible modules. Their comprehensive nature

and extensive vulnerability databases make them highly effective

for organizations with mature security operations.

However, the use of such tools in early-stage development or

rapid testing scenarios is often impractical. Their deployment

typically requires significant configuration effort, licensing costs,

and specialized knowledge, which can be barriers for smaller

teams or agile development environments. VulScan is positioned

to bridge this gap by delivering lightweight, focused assessments

suitable for identifying foundational misconfigurations, thus

enabling earlier and more frequent security feedback.

B. Open-Source Security Tools for Web Applications

Open-source tools play a pivotal role in the web security

ecosystem, offering accessible options for a variety of security

tasks. Utilities such as Nikto and OWASP ZAP are widely used

for active scanning and identifying known vulnerabilities and

misconfigurations. Tools like Nmap, DirBuster, and Gobuster

support network reconnaissance and resource discovery.

Additionally, command-line utilities including curl and openssl

are often employed to examine HTTP response headers and

validate SSL/TLS configurations.

Despite their effectiveness, these tools often function in isolation,

requiring users to manually execute commands and interpret

disparate outputs. This fragmented process can be inefficient,

especially for those without specialized expertise in cybersecurity.

In contrast, VulScan offers a streamlined solution by integrating

key security checks into a single web interface, thereby

simplifying the vulnerability discovery process and improving

usability for less technical users.

C. Web-Based Security Validation Services

Various online platforms provide point-specific web security

checks. For instance, services like SSL Labs, securityheaders.io,

and the HSTS Preload Checker offer quick assessments of

SSL/TLS configurations and HTTP response headers. These tools

are user-friendly and require no setup, making them suitable for

one-off checks.

However, these services often suffer from limitations such as lack

of automation, inability to consolidate results across multiple

security domains, and privacy risks due to data being processed

by external servers. In response to these issues, VulScan performs

similar evaluations within a local environment, giving users more

control and ensuring sensitive URLs are not shared with third

parties. Moreover, its unified reporting interface enables a broader

security overview in a single scan session.

D. Academic Perspectives on Automated Vulnerability Analysis

Academic research in automated vulnerability detection spans

techniques such as static code analysis, dynamic behavior

modeling, anomaly detection, and machine learning-based

classification. These methodologies aim to enhance vulnerability

discovery by improving detection rates and reducing false

positives. Several studies have explored hybrid approaches that

combine static and dynamic analysis to better model real-world

attack surfaces.

Although these contributions significantly enrich the theoretical

understanding of web vulnerabilities, they are often limited to

research prototypes or specialized environments. In contrast,

VulScan is focused on practical usability and integration into

everyday development workflows. Rather than replicating in-

depth analytical functions, it offers a simplified mechanism for

detecting frequent configuration lapses and insecure design

patterns at an early stage.

E. Contribution and Positioning of VulScan

While the existing ecosystem contains numerous tools to address

specific aspects of web security, few solutions consolidate

fundamental checks into a unified, user-friendly interface

designed for early-stage use. VulScan addresses this need by

providing a centralized platform that evaluates HTTP response

headers, inspects SSL/TLS certificates, and flags insecure HTML

form implementations. It is particularly suited for developers,

small-scale teams, and educational environments where

accessibility and simplicity are paramount. By focusing on

essential security hygiene checks, VulScan complements more

advanced tools and supports the proactive identification of

vulnerabilities during the initial phases of development.

III. System Architecture and Methodology

System Architecture

The architectural design of VulScan emphasizes modularity,

extensibility, and operational efficiency, supporting rapid and

lightweight security assessments. The system adopts a client-
server paradigm, where the web-based frontend enables user

interaction, and the Flask-powered backend performs security

scans and processes results. Figure 1 outlines the high-level

system architecture and its major components.

A. Frontend Layer

The frontend serves as the primary interaction interface, built

using standard web technologies such as HTML5, CSS3, and

JavaScript. It provides a clean and responsive user experience,

allowing users to enter target URLs and initiate vulnerability

scans. Asynchronous communication with the server is handled

through JavaScript’s Fetch API, enabling non-blocking requests

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51624 | Page 3

and dynamic content rendering without page reloads. This design

improves interactivity and reduces response latency.

B. Backend Processing (Flask Framework)

The backend is implemented using the Flask microframework,

chosen for its simplicity, lightweight footprint, and ease of

integration with Python’s rich ecosystem of libraries. Upon

receiving user input, the backend executes a sequence of

predefined scanning routines, returning structured results to the

client. Flask’s routing and templating features facilitate secure

endpoint creation and clean separation of logic and presentation

layers.

C. Scanning Modules

Each scanning function is encapsulated as an independent

module, supporting maintainability and future extensibility. The

primary scanning components include:

• HTTP Header Analysis Module: Assesses the presence

and configuration of key HTTP response headers such as

Content-Security-Policy, Strict-Transport-Security, and

X-Frame-Options. The absence or misconfiguration of

these headers is flagged as a potential vulnerability.

• SSL/TLS Validation Module: Establishes a secure

connection to the target domain and retrieves certificate

metadata including issuer, subject, expiration date, and

public key parameters using Python’s ssl and socket

libraries. Certificates that are expired, self-signed, or

improperly configured are identified as risks.

• Form Security Module: Utilizes BeautifulSoup to parse

HTML and identify form elements. Forms lacking

HTTPS in their action attributes or missing cross-site

request forgery (CSRF) tokens are marked as insecure.

D. External Dependencies

VulScan relies on a set of well-maintained Python libraries to

implement its functionality efficiently:

• requests: Facilitates robust HTTP interactions with the

target application.

• ssl and socket: Enable low-level access to server

certificates for secure connection validation.

• BeautifulSoup (from bs4): Parses HTML content to

detect embedded form elements and associated

attributes.

These dependencies are chosen for their reliability, active

community support, and compatibility with Flask-based

applications.

Methodology

The scanning methodology implemented in VulScan is structured

to provide essential vulnerability insights with minimal system

overhead. The approach is sequential, beginning with input

validation and proceeding through targeted checks designed to

identify common yet critical web application security issues.

A. Target URL Validation

User-submitted URLs are first validated to ensure proper

formatting and prevent injection attacks. Python’s urllib.parse

module is employed to sanitize and normalize the input, reducing

the risk of malformed requests and ensuring compatibility with

subsequent modules.

B. Security Header Inspection

The application initiates an HTTP GET request to the target

domain and extracts response headers. These headers are

examined for critical directives that govern browser behavior and

mitigate client-side threats. Headers such as X-Content-Type-

Options, Referrer-Policy, and X-XSS-Protection are checked for

presence and configuration accuracy. Any missing or

misconfigured headers are noted and returned with contextual

feedback.

C. SSL/TLS Certificate Evaluation

A secure socket connection is established using Python’s

ssl.create_default_context() and socket.create_connection()

functions. The server’s certificate is retrieved and inspected for

validity, expiration, issuer trust chain, and common name

matching. Any anomalies such as outdated certificates or

mismatched common names are highlighted as security risks.

D. HTML Form Security Analysis

The system fetches the HTML content of the target page and scans

for <form> tags. For each form, it evaluates the action attribute to

determine whether data submission occurs over a secure (HTTPS)

channel. Additionally, the presence of CSRF tokens is inferred by

detecting hidden input fields commonly used for CSRF

protection. Forms lacking HTTPS or appropriate protection

indicators are flagged as insecure.

E. Result Compilation and Display

Upon completing the analysis, all findings are aggregated into a

structured JSON object. This object is returned to the frontend,

where the results are dynamically rendered in a user-friendly

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51624 | Page 4

format. Each identified issue is categorized based on its nature

and potential severity, providing actionable insights to users for

further remediation or deeper analysis.

IV. IMPLEMENTATION AND

TECHNOLOGIES USED

Implementation and Technologies Used

The implementation of VulScan is grounded in the use of open-

source, lightweight technologies aimed at achieving rapid

vulnerability assessment with minimal deployment overhead. The

system was developed to be modular, readable, and portable,

reflecting the design objectives laid out in the architectural

framework.

A. Development Environment
VulScan was developed and tested on a Linux-based system to

leverage its native support for Python environments and

networking tools. Version control was maintained using Git,

allowing for iterative development and rollback capability. The

project was hosted locally for testing purposes and can be easily

deployed via cloud-based repositories such as GitHub.

B. Frontend Implementation

The client-side interface was built using core web technologies to

ensure compatibility and ease of use.

1)HTML5:

Hypertext Markup Language (HTML5) was used to define the

structure of the user interface. The index.html file contains a

basic input form for entering the target URL and a placeholder

area for displaying scan results. This minimal structure promotes

user accessibility and efficient interaction.

2) JavaScript (ES6):

Client-side logic was implemented using JavaScript

(ECMAScript 2015+). JavaScript facilitates the dynamic

behavior of the application, particularly by managing the form

submission process and updating the DOM without requiring a

full page reload. The fetch() API is used to send asynchronous

POST requests to the /scan endpoint defined in app.py, enabling

non-blocking interaction between the frontend and backend. The

results, received in JSON format, are parsed and injected into the

HTML result section in real time.

3) Asynchronous Communication:

The use of async functions and the await keyword ensures that

data retrieval and rendering occur smoothly, without freezing the

user interface. This asynchronous design improves

responsiveness and aligns with the lightweight goals of the

application.

Justification:

These web technologies were selected due to their ubiquity,

browser compatibility, and simplicity. They provide an effective

mechanism for real-time interaction without the need for complex

front-end frameworks, which supports the project’s objective of

accessibility and ease of deployment.

C. Backend Implementation

The server-side logic and scanning engine are implemented in

Python, using Flask as the web framework.

1) Python:

Python was selected as the backend language due to its concise

syntax, extensive library support, and suitability for rapid

prototyping in the field of cybersecurity. The backend

functionality, defined in app.py, coordinates scan requests,

invokes scanning modules, and formats the results.

2) Flask:

Flask, a micro web framework, was employed to handle HTTP

requests and serve the web interface. Flask’s lightweight

architecture makes it particularly suitable for this application,

where the primary requirement is to process user-submitted

URLs and return security analysis results. The /scan route

accepts POST requests from the frontend, executes the scanning

logic, and returns a structured JSON response.

3) Core Python Libraries and Their Roles:

• requests:

Used to perform HTTP GET requests to the target URL.

This is fundamental for retrieving HTTP response

headers and HTML content required for security

analysis.

• socket and ssl:

These modules are used together to establish TCP

connections and perform SSL/TLS handshakes. The

ssl.create_default_context() function initializes a secure

context for certificate verification, which is essential for

validating the server’s encryption protocol.

• urllib.parse:

Utilized for parsing URLs and extracting components

such as the domain name. This is particularly important

for initiating secure connections in the SSL/TLS

validation module.

• BeautifulSoup (from bs4):

A parsing library used to analyze the HTML structure

of the target web page. It enables the extraction of

<form> elements, which are then evaluated to

determine if user data might be transmitted over

unencrypted channels.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51624 | Page 5

• jsonify (from Flask):

Converts Python dictionaries containing scan results

into JSON objects for structured communication with

the frontend.

Justification:

These libraries were chosen for their reliability, ease of use, and

alignment with the modular scanning methodology employed by

VulScan. Each library plays a specific role in implementing the

core security checks without adding unnecessary complexity.

D. Database Considerations

At this stage of development, VulScan operates without a

database. The tool performs real-time, stateless analysis of user-

submitted URLs, and does not retain scan histories or logs. This

design choice favors simplicity, ease of deployment, and

responsiveness. While persistent storage is not currently

implemented, future versions may incorporate lightweight

databases such as SQLite or NoSQL solutions to support

historical analysis and user-specific dashboards.

E. Deployment Notes

Although the system was executed in a development environment

using Flask’s built-in web server, it is compatible with production

deployment using WSGI-compliant servers such as Gunicorn, in

conjunction with a reverse proxy like Nginx. This would facilitate

secure, scalable access in real-world scenarios.

 STRUCTURE ANDOUTPUT:

V. SYSTEM EVALUATION AND SECURITY

MEASURES

 Security Considerations in VulScan Development

As VulScan serves to evaluate the security robustness of web

applications, its own development must uphold strong security

standards. This section outlines the design decisions and technical

implementations made to safeguard VulScan's integrity and to

ensure that it operates securely without introducing risks to users

or scanned targets.

A. Security-Centric Design Principles

1)Reduced Attack Surface

VulScan is developed using a minimalistic architecture centered

on the Flask framework. By limiting external dependencies and

restricting user-accessible endpoints, the application inherently

minimizes its exposure to potential attacks. This focused design

allows for more controlled and secure functionality.

2)Logical Isolation of Components

All scanning operations are executed on the server side, and the

frontend merely facilitates input submission and result display.

This separation of concerns ensures that no direct access is

provided to backend processes or system resources, maintaining

clear boundaries between user interaction and scanning logic.

3)Input Processing and Validation

User input is limited to a single URL field, which is parsed using

Python’s urllib.parse module. This parsing step verifies the

structural correctness of URLs and helps prevent malformed or

potentially malicious input from disrupting the scanning process.

Although basic, this validation contributes to safer request

handling.

4)Exception Handling for Fault Tolerance

To ensure operational stability, exception handling is integrated

across the application. Errors related to network connectivity and

SSL handshakes are caught and managed using appropriate

exception classes. This approach avoids abrupt terminations and

prevents the disclosure of technical error messages to the user.

B. Network and Communication Safeguards

1)Secure Out bound Requests

VulScan communicates with target applications using standard

HTTP and HTTPS protocols through Python’s requests library

and ssl module. These libraries enforce modern security

standards, including TLS certificate verification and encrypted

sessions, supporting secure and reliable interactions during

scanning.

2)Internal Communication via Secure APIs

The exchange between the frontend and backend is handled

through asynchronous JavaScript and the Fetch API. While this

is conducted over HTTP in local testing environments,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51624 | Page 6

deployment best practices recommend using HTTPS to protect

data-in-transit from interception or tampering.

3)Controlled Port Usage

In development mode, VulScan operates over port 5000. For

production scenarios, deployment behind a secure reverse proxy

(e.g., Nginx) is recommended, exposing only essential ports

such as 80 or 443. This limits network exposure and aligns with

standard security practices.

C. Data Handling and Privacy Measures

1)Ephemeral Processing Model

The current version of VulScan processes scan requests without

retaining any input, output, or metadata. Each interaction is

stateless and independent, thereby reducing risks associated with

data storage, including unauthorized access or breaches.

2)Limited Data Scope

VulScan is purpose-built to analyze publicly accessible URLs

and does not solicit, store, or process any sensitive or personally

identifiable information. This design decision further reduces

compliance obligations and enhances user trust.

D. Operational Security Practices

1)Restricted Execution Environment

Although initially deployed in a development context, VulScan

is structured to operate with minimal system privileges. Running

the service with limited permissions mitigates the potential

impact of security incidents by restricting access to system

resources.

2)Avoidance of Shell-Based Commands

Unlike other scanners that rely on executing external programs

via system calls, VulScan conducts all analyses internally using

Python code. The absence of os.system, subprocess, or

equivalent methods eliminates the possibility of command

injection attacks and simplifies security validation.

3)Dependency Integrity

All libraries integrated into VulScan—such as Flask, Requests,

Beautiful Soup, and SSL—are sourced from well-maintained,

widely adopted repositories. Keeping these dependencies

updated ensures protection against known vulnerabilities and

strengthens the reliability of the application.

E. Prospective Enhancements

Future versions of VulScan may include extended security

features such as user authentication, access control mechanisms,

and encrypted logging. Regular code reviews and security

assessments are also anticipated to ensure ongoing adherence to

secure development practices as the tool evolves.

VI. CONCLUSION AND FUTURE

ENHANCEMENTS
A. Conclusion

The increasing reliance on web applications has underscored the

critical need for efficient, accessible tools capable of performing

preliminary security evaluations. Many of the most common and

impactful vulnerabilities stem from oversights during early

development, highlighting the necessity for lightweight solutions

that facilitate early detection.

This study introduced VulScan, a web-based multi-scanner

developed using Flask, aimed at automating and simplifying

foundational security checks for web applications. Designed with

usability and speed in mind, VulScan consolidates key

assessments—including HTTP security header validation,

SSL/TLS certificate inspection, and form security analysis—into

a unified, user-friendly platform.

The tool serves as an efficient mechanism for identifying basic

security misconfigurations, supporting developers and security

practitioners in their initial diagnostic efforts. Experimental

evaluations confirmed VulScan's ability to detect critical

omissions such as absent headers, insecure form configurations,

and invalid or misconfigured SSL certificates with consistency

across diverse test environments.

By abstracting away complexity and offering immediate

feedback, VulScan contributes to strengthening the early-stage

security posture of web applications. Its design encourages

proactive mitigation of risks and aligns with broader efforts to

democratize access to security tools for non-expert users.

VII. REFERENCES:

1] OWASP Foundation, “OWASP Zed Attack Proxy (ZAP) –

Project Overview,” OWASP, 2024. [Online]. Available:

https://owasp.org/www-project-zap/ (Accessed: July 23, 2025).

[2] CIRT Security Tools, “Nikto Web Server Scanner,” CIRT.net,

2025. [Online]. Available: https://cirt.net/Nikto2 (Accessed: July

23, 2025).

[3] G. Lyon, “The Nmap Project – Network Mapper Tool,”

Nmap.org, 2025. [Online]. Available: https://nmap.org (Accessed:

July 23, 2025).

[4] The Flask Developers, Flask Web Framework Documentation,

Version 2.3.2, 2025. [Online]. Available:

https://flask.palletsprojects.com/ (Accessed: July 23, 2025).

[5] Python Software Foundation, “Requests: HTTP for Humans,”

Requests Documentation, 2025. [Online]. Available:

https://requests.readthedocs.io (Accessed: July 23, 2025).

[6] L. Richardson, “Beautiful Soup: HTML and XML Parser,”

Crummy.com, 2025. [Online]. Available:

https://www.crummy.com/software/BeautifulSoup/ (Accessed:

July 23, 2025).

[7] Python Software Foundation, “urllib.parse — URL Parsing

Module,” Python 3.12 Documentation, 2025. [Online]. Available:

https://docs.python.org/3/library/urllib.parse.html (Accessed:

July 23, 2025).

[8] Mozilla Developer Network, “HTTP Security Headers –

Overview,” MDN Web Docs, 2025. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

(Accessed: July 23, 2025).

[9] OpenSSL Project, “SSL/TLS Protocols and Best Practices,”

OpenSSL.org, 2025. [Online]. Available:

https://www.openssl.org/docs/manmaster/man7/ssl.html

(Accessed: July 23, 2025).

[10] OWASP Foundation, “OWASP Top 10: Critical Web

Application Security Risks – 2021,” OWASP.org, 2021. [Online].

Available: https://owasp.org/www-project-top-ten/ (Accessed:

July 23, 2025).

[11] J. Patel and K. Sharma, “Detection and prevention of

injection attacks in modern web applications,” International

Journal of Cybersecurity Research, vol. 6, no. 1, pp. 32–40, Mar.

2022.

[12] M. K. Sen, “Improving secure software development with

open-source vulnerability scanners,” in Proc. 2021 IEEE Intl.

Conf. on Software Security Engineering, Singapore, 2021, pp. 88–

93.

http://www.ijsrem.com/
https://owasp.org/www-project-zap/
https://flask.palletsprojects.com/
https://requests.readthedocs.io/

