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Abstract—Wake turbulence poses a critical safety threat in 
aviation, especially during takeoff and landing. This project 
leverages machine learning to dynamically predict turbulence 
risk using real-time aircraft data, environmental conditions, and 
flight scenarios. A custom risk formula incorporates continuous 
aircraft weight categories, required separation time, and weather 
factors. Visualization is achieved using PyOpenGL and Tkinter, 
with data sourced from MSFS and FlightRadar24. Monte Carlo 
simulations across 12 aircraft pairs yielded 83.3% accuracy. 
The system offers real-time risk assessment and 3D simulation, 
enabling smarter air traffic control and paving the way for safer, 
adaptive wake turbulence mitigation in congested airspaces. 

I. INTRODUCTION 

Wake turbulence is an aerodynamic phenomenon that arises 

due to the generation of lift by an aircraft’s wings. As an 

aircraft moves through the air, it generates vortices at the 

wing tips due to pressure differences between the upper and 

lower surfaces of the wings. These vortices, known as wingtip 

vortices, are strong, circular patterns of air that spiral outward 

and downward behind the aircraft. This turbulent airflow 

forms the basis of what is termed wake turbulence, which 

can persist in the atmosphere for several minutes after an 

aircraft has passed. The strength of these vortices is directly 

related to the aircraft’s weight, speed, and wing configuration. 

Heavier, slower, and clean-configured aircraft (i.e., with flaps 

and landing gear retracted) generate the strongest vortices, 

posing significant hazards to other aircraft flying nearby or 

behind, especially smaller and lighter ones. 

Wake turbulence is most dangerous during the takeoff, 

landing, and approach phases of flight when aircraft are in 

close proximity and have limited altitude to recover from 

sudden changes in airflow. For example, a smaller aircraft 

trailing a larger one can experience sudden rolling or un- 

controllable movement if it enters the wake zone of the 

larger aircraft. Numerous aviation incidents and near-misses 

have been attributed to inadequate separation or unanticipated 

vortex behavior. To mitigate these risks, aviation authorities 

such as the International Civil Aviation Organization (ICAO) 

and the Directorate General of Civil Aviation (DGCA) have 

implemented separation standards based on aircraft weight 

categories. However, these standards are static and do not 

account for real-time weather conditions, crosswinds, or vari- 

ations in aircraft performance, which can significantly affect 

wake behavior.This evolving technological landscape holds the 

potential to revolutionize wake turbulence mitigation strategies 

and contribute significantly to aviation safety and operational 

efficiency. 

 

II. METHODOLOGY 
 

The proposed project adopts a hybrid simulation-prediction 

approach that integrates real-time flight data, physics-based 

vortex modeling, and machine learning to forecast wake turbu- 

lence risk. The system is structured in four main stages: data 

collection and preprocessing, vortex risk modeling, machine 

learning-based prediction, and real-time 3D visualization and 

simulation. 

 

A. Data Collection and Preprocessing 

The first step involves sourcing aircraft performance and 

environmental data from two primary sources: Microsoft 

Flight Simulator (MSFS) for controlled simulation data and 

FlightRadar24 for real-world flight tracking. Key parameters 

collected include aircraft type, speed, altitude, maximum take- 

off weight (MTOW), heading, vertical speed, and separation 

distance from nearby aircraft. Meteorological data, such as 

crosswind intensity, temperature, humidity, and vertical wind 

shear, is also factored in. The collected data is cleaned and 

normalized using NumPy and Pandas libraries. Aircraft are 

categorized dynamically based on continuous MTOW values 

instead of static ICAO categories, improving granularity in risk 

estimation. 
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B. Wake Vortex Risk Modeling 

Using established aerodynamic principles, a mathematical 

model is developed to estimate vortex strength and persistence. 

The model comprises three key components: Continuous Air- 

craft Category (C), Required Separation Time (tsep), and a 

calculated Risk Factor (R). The aircraft category is derived 

using a scaling formula based on MTOW, while tsep is 

calculated considering aircraft pairs, weather conditions, and 

runway scenarios. The Risk Factor (R) integrates vortex decay 

models, separation dynamics, and atmospheric influence to 

generate a normalized risk score. This score acts as the ground 

truth label for training the machine learning model. 

C. Machine Learning-Based Prediction 

The labeled dataset is used to train a machine learning 

model capable of predicting turbulence risk levels. Multiple 

algorithms, including Random Forest, XGBoost, and Support 

Vector Machines, were tested. XGBoost yielded the highest 

accuracy and was selected as the final model. The model 

takes flight and weather parameters as input and outputs a 

risk class (low, medium, or high) along with a numerical 

risk score. Hyperparameter tuning and cross-validation were 

employed to ensure model robustness. Additionally, a Monte 

Carlo simulation was run with 1000 iterations for each of 12 

aircraft pairings to validate model accuracy and consistency, 

yielding an overall accuracy of 83.3 

D. Real-Time Simulation and Visualization 

The prediction results are rendered using PyOpenGL for 

3D visualization and Tkinter for GUI integration. The system 

simulates aircraft movement and vortex propagation in a 3D 

space, highlighting zones of potential turbulence. The GUI 

includes real-time radar-like displays, aircraft telemetry, risk 

score indicators, and warning alerts. Visual overlays indicate 

wake zones and turbulence intensity. Graph plotting modules 

using Matplotlib enable dynamic visual representation of risk 

progression over time. 

III. MATHEMATICAL MODELING OF TSEP AND RISK 

FACTOR R 

The mathematical backbone of the project lies in accurately 

mass. Heavier aircraft produce stronger wake vortices, and this 

parameter directly feeds into vortex intensity estimation. 

The Required Separation Time (Tsep) is computed to 

determine how much time a trailing aircraft must wait before 

safely following a heavier aircraft. It is influenced by the 

atmospheric conditions, and relative aircraft categories: 

 

tsep = tsep, base · W · S (2) 

Where: 

• Clead and Ctrail are the continuous category values of the 

leading and trailing aircraft respectively, 

• W is the weather factor, accounting for crosswind, tem- 

perature, and turbulence, 

• S is the aircraft scenerio. 

This equation ensures that greater separation is required 

in higher turbulence sensitivity, or larger mass differences 

between aircraft. 

 

Fig. 1. Weather Factor Multiplier 

 

 

 

Fig. 2. Scenario Factor Multiplier 

 

The Risk Factor R is calculated by comparing the actual 

separation time (Tact) to the required separation (Tsep). It quan- 

tifies how close an aircraft pair is to a potentially hazardous 

situation: 

 ∆t 
tsep 

quantifying wake vortex behavior and calculating the separa- 

tion  
Tsep) and the Risk Factor (R). These val- ues are computed 

using aircraft dynamics and environmental conditions. 

First, we define a continuous aircraft category C based 

on the aircraft’s Maximum Take-Off Weight (MTOW). Unlike 

traditional ICAO categories that discretely classify aircraft, 

a continuous category offers better granularity for dynamic 

modeling. The category is computed using: 

This produces a dimensionless value: 

• R < 3: indicates a safe situation (more than required 

separation), 

• R = 3: borderline or threshold-safe, 

• R > 3: increased risk; higher values signify greater 

danger. 

This transforms R into a value between 1 and 5, which is 

easier to interpret and train in classification models. 

These equations are central to both the rule-based validation 

C = a + b · log10 (MTOW) (1) 
of aircraft safety and the supervised labeling of data used 

for training machine learning algorithms. The blending of 

Here, MTOW is expressed in kilograms, and the resulting C 
is a dimensionless value that scales proportionally with aircraft 

physical modeling with statistical learning enhances both the 

transparency and accuracy of the overall system. 
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IV. IMPLEMENTATION 

The system leverages Python-based tools and a combination 

of physics-based equations and statistical methods to simulate 

aircraft interactions and visualize potential hazards. Three 

core mathematical equations form the backbone of the risk 

prediction engine: the continuous aircraft category equation, 

the required separation time, and the non-linear risk factor. 

The first step in the system is to categorize aircraft based 

on their wake turbulence generation potential. Rather than 

relying on static categories, a continuous aircraft category (C) 

is calculated using the logarithmic formula: 

C = a + b · log10(MTOW) (4) 

where a = −4.734 and b = 1.737, and MTOW is the 

maximum takeoff weight of the aircraft in kilograms. 

For example, for a Boeing 787 with an MTOW of 227,930 

kg: 

log10(227930) ≈ 5.357 

C = −4.734 + 1.737 · 5.357 ≈ 4.567 

For an ATR 72 with an MTOW of 22,800 kg: 

the reliability of the physics-informed feature engineering and 

risk classification process. 

Finally, the entire system was wrapped in a user-friendly 

interface using Tkinter for the GUI and PyOpenGL for the 3D 

visualization. The GUI displays aircraft movements, separation 

timelines, vortex trail simulations, and real-time calculated 

risk values. Whenever R exceeds a set threshold, visual alerts 

and warnings are triggered, allowing operators or pilots to 

take immediate action. The interface also supports scenario 

testing by allowing users to modify environmental variables 

and observe how vortex interactions and risk scores change 

accordingly. 

 

V. RESULTS AND ANALYSIS 

 

A. Risk Factor v/s Separation Plot 

The graph illustrates the relationship between risk score and 

time separation for three different aircraft pairs, highlighting 

how wake turbulence hazard decreases with increased separa- 

tion time. The vertical axis represents the computed risk score, 

ranging from 1 (low risk) to 5 (high risk), while the horizontal 

log10 (22800) ≈ 4.358 
axis shows time separation in minutes between a leading and 

a trailing aircraft. 

C = −4.734 + 1.737 · 4.358 ≈ 2.835 

With both aircraft categories determined, the next step is 

to compute the required separation time tsep. This accounts 

for environmental factors such as wind and runway geometry, 

using: 

tsep = tsep, base · W · S (5) 

Assuming tsep, base = 90 seconds, a weather factor W = 1.1, 

and scenario factor S = 1.2, we get: 

tsep = 90 · 1.1 · 1.2 = 118.8 seconds 

To assess operational risk, we calculate the risk factor R 
using: 

 

R = 1 + 4 

 
 ∆t 
tsep 

2 

 
(6) 

Fig. 3. Risk Factor v/s Separation Plot 

 

The blue curve, representing the Boeing 747 followed by 

If the actual separation is ∆t = 60 seconds: 

∆t 60 
= ≈ 0.505 

tsep 118.8 
  

1
  0.505 

a Cessna 172, shows the slowest risk decay, indicating that 

larger aircraft produce stronger, longer-lasting vortices that 

pose persistent threats to smaller trailing aircraft. In contrast, 

the orange line—Boeing 737-800 followed by another 737-800 

shows a steeper decline, meaning that aircraft of similar sizes 

 

R = 1 + 4 · 0.705 = 3.82 

This elevated value indicates a high-risk situation that 

requires immediate attention. 

To ensure the model’s robustness, a Monte Carlo simulation 

was run. For each of 12 aircraft pairs, 1,000 simulations were 

conducted under varying weather and separation conditions. 

The model achieved an average accuracy of 83.3%, validating 

green curve, for Cessna Citation X followed by a Beechcraft 

King Air, falls between the two, showing moderate risk 

persistence due to their comparable but lighter profiles. 

Overall, the graph demonstrates how aircraft mass differ- 

ential affects the rate at which turbulence risk diminishes 

over time. It supports the need for dynamic, aircraft-specific 

separation guidelines rather than fixed values, as the safe time 

gap varies significantly depending on the aircraft pair involved. 

and vortex strength reach safe separation more quickly. The 2 
≈ 0.705 
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B. Risk Factor Heatmap 

The heatmap provides a visual representation of how the 

wake turbulence risk factor varies for the aircraft pair Boeing 

747 leading a Cessna 172, based on different combinations 

of weather conditions and flight phases, with a fixed time 

separation of 4 minutes. The vertical axis categorizes weather 

from ”Very Calm” to ”Severe Turbulence,” while the horizon- 

tal axis covers operational scenarios including takeoff (rolling 

and static), landing (standard approach and short final), and 

cruise. The color intensity reflects the magnitude of the risk 

factor, with darker shades indicating higher risk and lighter 

shades denoting lower risk. 

 

Fig. 4. Heatmap 

 

In very calm weather, the risk factor is consistently 

high—peaking at 4.05 during static takeoff—because vortices 

decay slowly in the absence of atmospheric mixing. As 

weather becomes more turbulent, the risk factor decreases due 

to accelerated vortex dissipation. Cruise conditions, especially 

under severe turbulence, exhibit the lowest risk (as low as 

3.18), indicating better natural mitigation. Takeoff scenarios, 

particularly from static starts, generally carry the highest 

risk, emphasizing the need for greater caution during early 

flight phases. This analysis demonstrates the importance of 

dynamically adjusting aircraft separation based on real-time 

weather and operational context, rather than relying solely on 

static rules. 

C. Monte-Carlo Simulation Accuracy 

The table summarizes the Monte Carlo simulation results 

conducted to evaluate the model’s accuracy in predicting wake 

turbulence risk across various aircraft category pairs, weather 

conditions, and flight scenarios. The simulation involved 12 

distinct combinations of lead and follow aircraft categories 

(ranging from 1 to 5), representing different aircraft sizes and 

wake turbulence strengths. Simulations were performed under 

varying weather conditions (from calm to severe turbulence) 

and flight phases (such as landing, takeoff, and cruise). 

Each row reports the accuracy (%) of the model’s risk 

classification over 1,000 randomized simulation runs for that 

 

 

 
Fig. 5. Monte-Carlo Results 

 

 

specific scenario. Results show significant variation based 

on conditions. For instance, under severe turbulence during 

landing, prediction accuracy dropped as low as 46.0%, indi- 

cating the challenge of modeling highly unstable atmospheric 

conditions. In contrast, under calm conditions during cruise or 

takeoff, the model achieved up to 96.5% accuracy, reflecting 

higher predictability in stable environments. 

VI. CONCLUSION 

The “Wake Vortex Prediction and Turbulence Avoidance 

System” was designed to address a critical safety concern 

in modern aviation—wake turbulence—by combining physics- 

based modeling, real-time data processing, and machine learn- 

ing. The overall goal was to develop a system capable of 

predicting wake turbulence risk in real time, adapting dy- 

namically to varying aircraft types, environmental conditions, 

and operational scenarios. The results from simulations, model 

evaluations, and visualizations demonstrate that this goal has 

been largely achieved, with strong accuracy, high interpretabil- 

ity, and practical implications for air traffic management. 

The core of the system lies in its mathematical modeling. By 

calculating a continuous aircraft category (C) based on MTOW 

using a logarithmic scale, the model avoids the limitations of 

discrete ICAO weight categories and provides more nuanced 

inputs. This was critical for capturing subtle differences in vor- 

tex generation across a wide range of aircraft types. Similarly, 

the required separation time (tsep) formula integrated weather 

and scenario factors, allowing the system to adjust safety 

margins depending on the presence of crosswinds, turbulence, 

or complex runway geometries. Finally, the risk factor (R) 

equation, modeled as an exponential decay function, effec- 

tively reflected how actual separation compares to required 

safety limits, making the output both mathematically sound 

and intuitively understandable. 

The system’s reliability and predictive capacity were ex- 

tensively validated using Monte Carlo simulations, involving 

12 different lead-follow aircraft pairings under varied environ- 

mental and operational conditions. Each simulation ran 1,000 

iterations per pair, producing a robust dataset of predictions. 

The overall accuracy achieved was 83.3%, indicating that the 

machine learning model, trained on physics-informed features, 

can generalize well across a range of real-world conditions. 

The variation in accuracy across different scenarios also 

provided valuable insight. For example, the lowest accuracy 

(46.0%) was recorded in the ”severe turbulence + landing” sce- 

nario, reflecting the difficulty in modeling highly chaotic, low- 
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          International Journal of Scientific Research in Engineering and Management (IJSREM) 
          Volume: 09 Issue: 06 | June - 2025                           SJIF Rating: 8.586                                  ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49656                              |        Page 5 

altitude vortex behavior. Conversely, under calm conditions 

during cruise or controlled takeoff, the model consistently 

achieved accuracy levels above 95%, affirming that the system 

is particularly effective in stable atmospheric contexts. 

The risk score vs. time separation graph further validated 

the theoretical design of the risk model. It showed clear 

exponential decay behavior across three aircraft pairs, with 

steeper curves for lighter aircraft combinations and slower 

decay for heavy-to-light pairs (e.g., Boeing 747 to Cessna 

172). This confirmed that the model accurately captures the 

physics of vortex persistence and supports differentiated time 

separation recommendations based on aircraft types. Such 

differentiation is crucial for optimizing runway throughput 

without compromising safety. 

Another valuable insight came from the risk factor heatmap, 

which analyzed the sensitivity of the risk score under a 

fixed separation (t = 4 minutes) for different combinations 

of weather and flight scenarios. The heatmap showed that 

very calm conditions led to the highest risk values, as wake 

vortices persisted longer in undisturbed air. Meanwhile, severe 

turbulence led to significantly lower risk factors, as the natural 

instability of the atmosphere accelerates vortex dissipation. 

Among flight phases, takeoff from static starts showed con- 

sistently high risk due to the close proximity of aircraft and 

lack of vertical or lateral separation, whereas cruise phase 

showed the lowest average risk. These patterns provide critical 

evidence that wake risk should not be treated uniformly 

and that weather and scenario-aware separation policies are 

essential for operational safety. 

The GUI not only displayed current aircraft positions, risk 

scores, and environmental conditions but also featured real- 

time alerts when thresholds were breached. The visual render- 

ing of vortex trails in 3D enhanced interpretability, allowing 

operators to intuitively understand how risk evolved spatially 

and temporally. This was particularly useful in educational or 

simulation-based settings, such as pilot training or air traffic 

controller simulations. 

From a systems engineering standpoint, the modular archi- 

tecture enabled flexible integration of real-time data streams 

(e.g., FlightRadar24 and simulated inputs), physics-based 

computations, and machine learning inference. The use of XG- 

Boost was especially valuable, as it offered strong performance 

on tabular data with complex non-linear relationships, such as 

the combination of weather, aircraft metrics, and operational 

parameters. 

The project also highlighted a few limitations and areas for 

future enhancement. While the model achieved high overall ac- 

curacy, it struggled in scenarios involving severe atmospheric 

instability. Incorporating real-time meteorological data feeds 

(e.g., from ADS-B or OpenSky APIs) could further improve 

predictions. Additionally, the current version is tailored for 

desktop use with local processing. Extending the system 

to a web-based or mobile platform with cloud computation 

would allow wider accessibility, especially for integration into 

modern air traffic control systems. 

In conclusion, the project delivers a powerful, data-driven 

solution to a longstanding aviation hazard. The combination 

of mathematically grounded modeling, high-performance ma- 

chine learning, and intuitive visualization makes this sys- 

tem a promising candidate for operational deployment. By 

moving beyond fixed separation standards and enabling real- 

time risk awareness, the project has the potential to improve 

both safety and efficiency in increasingly congested airspace 

environments. 

VII. FUTURE WORK 

The future work of the “Wake Vortex Prediction and Tur- 

bulence Avoidance System” aims to enhance the system’s 

accuracy, scalability, and operational deployment. One primary 

direction is the integration of real-time ADS-B and METAR 

data feeds, allowing the model to adapt dynamically to live 

weather and flight movements. This would enable seamless 

deployment in air traffic control environments and real-time 

decision-making. Another area is enhancing the machine learn- 

ing model by incorporating deep learning techniques such as 

LSTMs or transformers, which could better capture temporal 

patterns in vortex behavior. Moreover, expanding the training 

dataset with more diverse aircraft pairings and global weather 

scenarios would improve generalization across airspaces. Im- 

plementing a web or cloud-based version would also support 

accessibility across devices and improve performance through 

scalable computing. These advancements would position the 

system as a comprehensive, intelligent decision-support tool 

for next-generation aviation safety and traffic management. 
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