

Weather Prediction Using Logistic Regression (AI/ML Techniques)

Sumana Chatterjee, Ph.D. Scholar (Computer Science), Nirwan University, Jaipur, Rajasthan, MET A, RMC Kolkata, India Meteorological Department E-Mail Id: sumana.spssaha.chatterjee@gmail.com

ABSTRACT: Prediction of '**Weather or atmospheric condition**' by AI, machine learning techniques is a process of great challenge. Attempts had been made by Computer, Data-Scientists since long, how this condition can be performed successfully .The objective is to predict weather for a place for certain days, here 'ALIPORE (42807)'.We collected 'ALIPORE surface data' (CSV file) for the period, 1969-2023. After collecting this big data, completed process of 'data mining' and necessary 'feature engineering' steps along with choosing responsible dependent or independent parameters called as predictors to find results or outputs by various machine learning packages of Python like 'Pandas', 'SEABORN', 'STATS MODEL' etc. ,under 'SCIKIT LEARN' as well as various ML code and techniques like 'Shape', 'drop null values', 'Describe', 'Label-encoding', 'IV-method', 'VIF method' etc. ,some based on statistical theories . Ultimately equation of 'Logistic Regression' had been built with test-train split formula to predict future weather as 'SIGNIFICANT' or 'CLEAR' for certain test array. During analysis, all the weather phenomena as obtained from this big data set, were classified into two categories. No(1)--- 'Lightning (code 0)', 'Drizzle (Code 5)', 'Rain (Code 6)' and 'Thunderstorm with rain (Code 9)'--for occurrence of any of these weather phenomena ,data were considered as '1' or 'SIGNIFICANT' weather and No (2)---On the other hand , all weather except <u>weather as mentioned above ,No (1),</u>were considered as '0' or 'CLEAR' weather.

Keywords: Confusion-matrix, Heat-map, True-positive, True-negative, False-positive, False-negative, Accuracy-score, Classification-report, Precision, Recall, F1 score.

Introduction: With the advancement of technology and advent of computer, the process of **prediction of weather** or **determination of pattern of probable atmospheric events,** more accurately and efficiently ,with the help of AI (artificial intelligence) and ML (machine learning techniques) based on statistical theories has become a great point of interest .How the big data for some place ,since historical time ,can be analysed with machine learning software to find out probable weather .It is commonly known that weather is very crucial factor having direct impact on society ,including agriculture, transportation, emergency management and all other vital corners of our society and wellness. Different machine learning techniques are there to detect future weather , such as trend of weather pattern by TIME-SERIES etc. In this case we tried to detect probable weather criteria with the help of LOGISTIC REGRESSION METHOD, which falls under supervised learning method. This is based on data analysis with weather data with discrete output , either '1' or '0'. As we have considered , '1' for SIGNIFICANT weather , '0' for CLEAR weather ,from the predicted test data ,we can get array of predicted weather based on previous data and also giving input for previous data weather data, we can get next day weather pattern also.

International Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

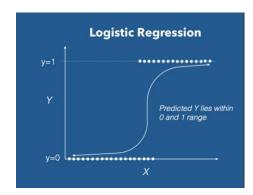
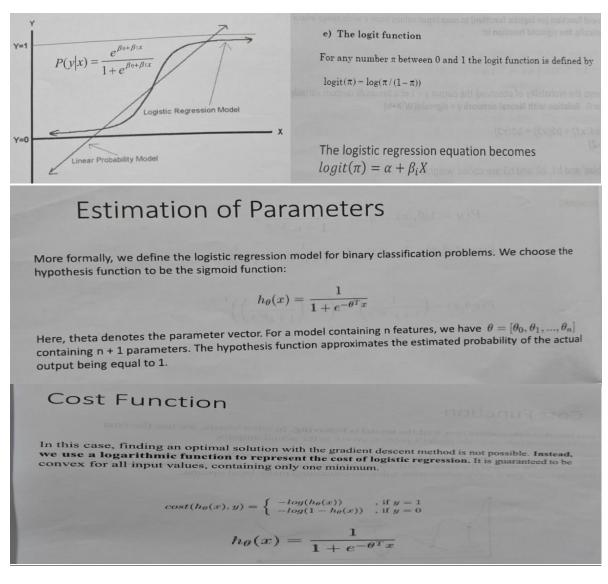



Image of logistic regression

Theory of logistic regression in the back ground of analytical procedure

Citation : Srinivasan , Dr Babji , Associate Professor , Department of Applied Mechanics, IIT Madras, 2023, note on logistic regression.

Literature Review:

Study materials ,notes of professors and data-scientists as well as hand on training on **python code** analysis on zupyter or google collaboratory platform ,study material collected from the course '**ADVANCED CERTIFICATION IN DATA SCIENCE AND AI ,CODE IIT MADRAS ,Digital skill academy's programme',** organised by INTELLIPAAT ,was the biggest source to gain this concept of data analysis ,machine learning and determination of output related to this work. Other than these, the sites of data analysis company, Kaggle , 'Analytics Vidya', 'Towards data science', 'geeks for geeks' 'W3 school' ,Medium etc. ,those open sources in google Search Engine were very much helpful to get the suitable codes and to execute the programme. Also for one python code , had taken a little help of AI chatbot, 'gemini', available in google collab platform. **Research gap-** Several research papers are there , based on data analysis /machine learning related to weather prediction ,with the help of trained data set, to determine predicted weather for next-day with the help of previous day input data ,but basically these were obtained in some different manner, not by such analysis ,where with the help of logistic regression model analysis had been done and where data set used was big data ,historical data starting from 1969 till 2023(year 2023 was absent for table 3). So naturally the analysis was more dependable to obtain future prediction more accurately.

RESEARCH QUESTIONS /HYPOTHESIS

In this research, basically we wanted to determine whether significant that means weather with rain or thunder or drizzle would occur or not. Depending on the output we had to reach that. Based on the model, with the help of trend of this previous data pattern, we could get array of probable weather pattern, lastly with the help of input of previous day data, we can find next day weather pattern whether clear weather will be there or not.

METHODS:

Data-science ,machine learning, statistical theory ,data analysis ,scientific methods all together run hand to hand . In our case for weather analysis , we first of all collected weather data from the data supply portal of IMD PUNE (India Meteorological Department –Pune, data supply centre).From this portal, online collection of Alipore (station code 42807) data in CSV (comma separated)file format was collected for the purpose of weather analysis and to get weather prediction as model output . Scikit learn is an open source library for data analysis built on Numpy, Scipy and matplotlib , seaborn etc. In our case ,this research design is based upon qualitative analysis ,where we want to predict the qualitative output, whether the outcome is 'significant weather' or 'clear weather' .To get the output ,data analysis acts a vital role in this research design. The first step is data engineering. It consists of data download, to understand the volume of data (shape of data),conversion of data in proper format, deleting (drop command) of duplicate data ,null data to prepare the compatibility of successful execution of python code. Also to label encoding different types of weather criteria into numeric value by 'apply lambda' function. Based on this transformation and also various codes of data analysis ultimately reached the output of prediction. Some screenshots of procedure of data analysis had been given herewith sequentially.

nternational Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 09 | Sept - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

👃 Search		5																									
\rightarrow G	20	colab.res	earch.go	oogle.	com/driv	e/10Dd	iQleClA	AHTtl	-DPF8	ЕрМЕ	4kbt7	2rTs											☆	Ĺ		S Erro	or
Gmail 🔺 B	Bookmark	s G I	🜱 Sent	Mail - s	umana	🎥 Ta	ta Photo	on Yah	100 🚺	🕜 Pay	yUMone	ey 🜆	Welcom	ne to Ind	lian	🚊 Na	ational Tr	ain Enq	ui 🎗	3 Train	Time Table	20 📶 BE	ID Bag to Dum	D	G Go	oogle	>>
		ALIPORI ew Inse				-		-			per f	for flye	er cur	tain r	aise	/isag	*					E	Comment	2	Share	۵	s
+ Code	e + Te	xt																					Connect	-	+	Gemini	
																							∧ ↓ ∈		â	ņ	T :
		pandas																							~~*		, .
		numpy a seaborn		ıs																							
	1.1	matalat	lib.nv	/plot	as plt																						
	import	warning gs.filte	s		ignore)																					
[]	import warning	warning	s rwarni	Ings('	-		le_2_D	Daily	_NDCQ	2-202	4-06-	- <u>192-CO</u>	MBINE	D.csv') # si	ep=sep	rator										
[]	import warning data=po	warning gs.filte	s rwarni sv(r' <u>/</u>	ings(' <u>conte</u>	- nt/428	07_Tabi				-		- <u>192-co</u> i MSLP	MBINE DBT	D.csv' WBT) # s DPT	ep=sep RH	vP	DD	vv	c1	А						
[]	import warning data=po	warning gs.filte d.read_c INDEX	s rwarni sv(r' <u>/</u>	ings(' <u>(conte</u> MN [- nt/428	97_Tabi	AW		SSH	т1.			DBT	WBT	DPT	RH			VV 96.0	c1 0	A 0						
[]	import warning data=po data	warning gs.filte d.read_c INDEX	s rwarni sv(r' <u>/</u> YEAR	ings(' <u>(conte</u> MN [1	nt/428 OT MAX	07_Tab MIN 10.9	AW 3 (RF	SSH 9.4	т1 . 1	···· 1	MSLP	DBT 17.6	WBT 14.0	DPT 11.0	RH 65.0		36									
[]	import warning data=po data 0	warning gs.filte d.read_c INDEX 42807	srwarni sv(r' <u>/</u> YEAR 1969	(conte MN [1 1	nt/428 DT MAX 1 25.3	07_Tab: MIN 10.9	AW 3 (2 (RF : 0.0 0.0	SSH 9.4 6.4	T1 . 1 4	···· 1 1	MSLP 1014.2	DBT 17.6 16.8	WBT 14.0 15.0	DPT 11.0 13.6	RH 65.0 82.0		36 23	96.0	0	0						
[]	import warning data=po data 0 1	warning gs.filte d.read_c INDEX 42807 42807	sv(r' <u>/</u> YEAR 1969 1969	(conte MN (1 1	nt/428 DT MAX 1 25.3 2 26.7	a7_Tab: MIN 10.9 12.7 14.2	AW 3 (2 (1 (RF : 0.0 0.0	9.4 6.4 7	T1 . 1 4 4	···· 1 1 1	MSLP 1014.2 1014.4	DBT 17.6 16.8 18.2	WBT 14.0 15.0 15.4	DPT 11.0 13.6 13.3	RH 65.0 82.0 73.0		36 23 34	96.0 93.0	0 0	0						
[]	import warning data=po data 0 1 2	warning gs.filte d.read_c INDEX 42807 42807 42807	sv(r' <u>/</u> YEAR 1969 1969	(<u>conte</u> <u>MN</u> 1 1 1 1	nt/428 0T MAX 1 25.3 2 26.7 3 28.8	a7_Tab: MIN 10.9 12.7 14.2 14.1	AW 3 (2 (1 (2 (RF : 0.0 0.0 0.0 0.0	9.4 6.4 7	T1 . 1 4 4	···· 1 1 1 1	MSLP 1014.2 1014.4 1015.4	DBT 17.6 16.8 18.2 20.8	WBT 14.0 15.0 15.4 15.8	DPT 11.0 13.6 13.3 11.9	RH 65.0 82.0 73.0 57.0		36 23 34 23	96.0 93.0 95.0	0 0	0 0						
[]] 5	import warning data=po data 0 1 2 3	warning gs.filte d.read_c INDEX 42807 42807 42807 42807	sv(r' <u>/</u> YEAR 1969 1969 1969	(<u>conte</u> <u>MN</u> 1 1 1 1	nt/428 0T MAX 1 25.3 2 26.1 3 28.5 4 28.2	a7_Tab: MIN 10.9 12.7 14.2 14.1	AW 3 (2 (1 (2 (RF : 0.0 0.0 0.0 0.0	9.4 9.4 6.4 7 9.1	T1 . 1 4 4	···· 1 1 1 1	MSLP 1014.2 1014.4 1015.4 1016.9	DBT 17.6 16.8 18.2 20.8	WBT 14.0 15.0 15.4 15.8	DPT 11.0 13.6 13.3 11.9	RH 65.0 82.0 73.0 57.0		36 23 34 23	96.0 93.0 95.0 95.0	0 0 0	0 0 0						

Collected two csv files table 2 and table 3 from IMD PUNE DATA SUPPLY PORTAL ,merged as new excel file '42807_Table_2_Daily_NDCQ-2024_06_192_COMBINED-EXCEL file' ,then converted this merged file into csv file type for data analysis. Received this data file in content folder of google collab for analysis. Checked the shape /volume of data at initial situation before editing,merged the three columns of date related fields 'year','month','date' as one single field for ease of data engineering and then cheked whether any duplicate value was there to avoid duplication error.

```
ile Edit View Insert Runtime Tools Help Last saved at 1:15 AM
Code + Text
    19941 42807 2023 11 30 28.1 20.9
                                          1 0.0
                                                      1
                                                                NaN NaN NaN NaN NaN NaN NaN NaN NaN Na
   19942 rows × 24 columns
] data.shape
(19942, 24)
] data["Date"] = pd.to datetime(data["YEAR"].map(str) + "/"
                                                           + data["MN"].map(str) +
                                                                                       + data["DT"].map(str)
] data['Date'].drop_duplicates()
F
                Date
      0
          1969-01-01
           1969-01-02
      1
      2
          1969-01-03
      3
           1969-01-04
```

Then checked the data pattern as sample beginning from head of data with code as herewith below, also checked for null values (data not present) to avoid accuracy problem.

		: 08 Issue: 0	100Pt 10		5,1	F Rating:	51110				ISSN	
le Edit	View Insert R	untime Tools H	lelp Last saved	at 1:15 AM								
code +	Text											
1994	1 42807 2023	3 11 30 28.1	20.9 1 0.0	11.	NaN	NaN NaN	NaN N	aN NaN	NaN	NaN	NaN	Na
19942	rows × 24 colun	nns										
] data.	shape											
(1994	2, 24)											
] data	"Date"] = pd.	to_datetime(dat	a["YEAR"].map	(str) + "/"	+ data["M	N"].map(st	r) + "/"	+ data['	'DT"].n	nap(st	r))	
] data['Date'].drop_	duplicates()										
2	Date											
0	1969-01-01											
1	1969-01-02											
2	1969-01-03											
3	1969-01-04											
data.isr	ull().sum()											
	0											
INDEX	0											
YEAR	0											
MN	0											
DT MAX	0 31											
MIN	8											
AW	0											
	-											
RF	7											
RF SSH T1	0											

From this source of data, Alipore, weather data since 1969 to 2023 as per availability ,obtained from IMD PUNE ,DATA SUPPLY PORTAL.As checked there ,whether the dataset had any null value for any feature there. The required code was as above where in our dataset there were some null values as in one of the two csv datasets, table 2 and table 3. In table 2 ,data were absent from 27th december 2022 , as obtained, which considered as null values and had to delete to avoid erronius results. As obtained from table 2, data for 'maximum temperature',''minimum temperature','average wind','rainfall','sunshine hour' and 'weather phenomenon' in four quarters as mentioned there for a day,24 hours .On the other hand, from table 3, We obtained 'station level pressure', 'Mean sea level pressure','dry temperature','wet bulb bulb temperature','dew point temperature','relative humidity', 'vapourpressure', 'wind direction', 'visibility', 'low cloud' 'amount of low cloud' . Deleting duplicate data ,dropped null values ,rows with null values and in this way reshaped the whole data set to make compatible for analysis. Moreover Instead of four weather phenomena, as representation of weather parameter criteria in four quarters of a day, we considered a new variable T, to represent T1,T2,T3,T4 with the help of lambda function. If any significant weather was present for any quarter ,that means if any of the representing weather T1,T2,T3,T4 was within '9','6','0','5' (where '9' represented there as thunder-storm,'6' represented there as 'rain','0' represented there as lightning and '5' represented there as drizzle)

nternational Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 09 | Sept - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

т	Type of w	eather in code	e					
	Code	Weather Co	ode	Weather	Code	Weather	Code	Weather
	0	Lightning	1	Haze	2	Mist	3	Sand/ Dust storm
	4	Fog	5	Drizzle	6	Rain	7	Squall
	8	Gale	9	Thunder storm	J	Hail storm	к	Dust fog
	L	Line squall	м	Ground frost	N	Dew	0	Snow/sleet
G		ommencemen e in a day then						ured more
	Code	Time betv	veen ho	ours IST	Code	Tim	e between	hours IST
	1	000	1 to 03	00	5		1201 to 1	500
	2	030	1 to 06	00	6		1501 to 1	800
	3	060	1 to 09	00	7		1801 to 2	100
	4	090	1 to 12	00	8		2101 to 2	2400
	Duration	in minutes unt	0.04	ninutor Ec	r duration	more than	end walue	is rounded off

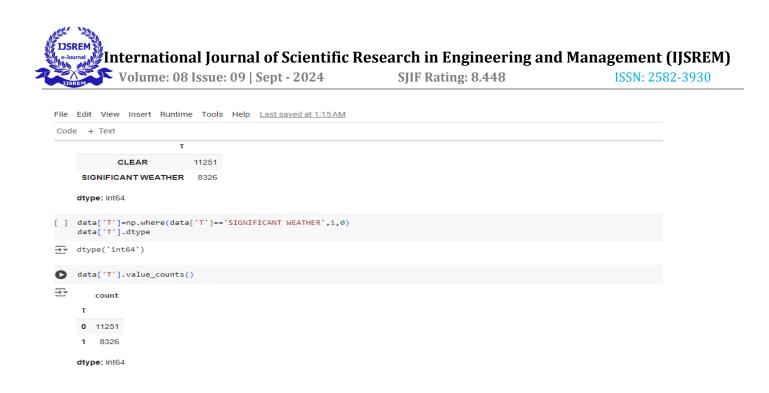
Duration in minutes upto 804 minutes. For duration more than 804, value is rounded off DUR to the nearest tens of minutes and 800 is added and the resulting value is entered. e.g. if duration is 947 minutes then it is entered as : 895 i.e. 95 + 800.

•	🔕 gmail login - Yahoo India Se 🗴 M Inbox (37,722) - sumana.sps: 🗴 🛆 Search results - Google Drivi X 😶 ALIPORE data (1969-2023) 🐄 K Suit Mail - sumana.spssad2 🗴 +		-	٥	×
\leftarrow	C colab.research.google.com/drive/14TmmS6qVAq_v_Irup98JnznLkMjGXRkT	@ ☆	Ď	s	÷
C	O ALIPORE data (1969-2023)logistic regression FLYER COPY ☆ File Edit View Insert Runtime Tools Help Last edited on 17 July.	😫 Sha	re 🏚	S	
∷ Q {x}	+ Code + Text Connect UU 307 VV 307 C1 307 A 307 Date 0 dtype: int64	▼ 4	⊢ Gemini		^
57 1	<pre>[] data.dropna(inplace=True) [] data.shape</pre>				
	→ (19577, 25)				
	<pre>[] data['T1'] = data['T1'].apply(lambda x: "SIGNIFICANT WEATHER" if x in ['9', '6', '0', '5'] else "CLEAR")</pre>				
<>	<pre>[] data['T2'] = data['T2'].apply(lambda x: "SIGNIFICANT WEATHER" if x in ['9', '6', '0', '5'] else "CLEAR")</pre>				
≣	<pre>[] data['T3'] = data['T3'].apply(lambda x: "SIGNIFICANT WEATHER" if x in ['9', '6', '0', '5'] else "CLEAR")</pre>				
>_	<pre>[] data['T4'] = data['T4'].apply(lambda x: "SIGNIFICANT WEATHER" if x in ['9', '6', '0', '5'] else "CLEAR")</pre>				
					\times
	🔎 Type here to search 🛛 💖 🛱 💽 📃 🚖 🛱 🥨 🔮 🖤 🧕 🧕 🔀 🔺 31°C Mostly cloudy 🗠 🖗 🚱	1 in	(N) 17:28 31-08-2	024	0

	<pre>[] data['T'] = data.apply(lambda row: "SIGNIFICANT WEATHER" if (row['T1']=="SIGNIFICANT WEATHER") or</pre>
	<pre>[] data = data.drop('T1',axis=1)</pre>
>	<pre>[] data = data.drop('T2',axis=1)</pre>
=	<pre>[] data = data.drop('T3',axis=1)</pre>
2	<pre>data = data.drop('T4',axis=1)</pre>

With the help of label encoding ,thus represented the weather for each day by the new variable 'T' ,as image 6.1 above and then dropped (deleted) the existing predictors T1,T2,T3,T4 to avoid error of duplication.Then understanding the effect of this transformation by filtering data for significant weather by data.

-


```
Comment
 Edit View Insert Runtime Tools Help Last saved at 1:15 AM
le
  + Text
                                                                                                                              Connect
 data = data.drop('T4',axis=1)
 filter=data['T']== "SIGNIFICANT WEATHER"
 filter new=data[filter]
 filter new
        INDEX YEAR MN DT MAX MIN AW
                                                      SLP
                                                               WBT
                                                                   DPT
                                                                               VP DD
                                                                                        VV C1 A
                                           RF
                                              SSH
                                                                          RH
                                                                                                        Date
                                                         ...
   13
        42807
              1969
                      1
                        14
                           27.5 15.7
                                      5
                                         26.0
                                               8.7
                                                  1014.3
                                                               17.6
                                                                   16.5
                                                                         85.0
                                                                                   18
                                                                                      96.0
                                                                                             5
                                                                                               5 1969-01-14 SIGNIFICANT WEATHER
        42807 1969
                     2 27 34.7 21.3
                                          0.0
                                                   1014.8
                                                           ... 21.4 17.6 53.0
                                                                                               0 1969-02-27 SIGNIFICANT WEATHER
   57
                                      7
                                                                                   25 96.0
                                                                                             0
   58
        42807
               1969
                     2 28
                           36.0 22.4
                                       6
                                          0.0
                                                   1013.5
                                                               22.2
                                                                   19.4
                                                                         62.0
                                                                                   23 97.0
                                                                                                0
                                                                                                  1969-02-28
                                                                                                            SIGNIFICANT WEATHER
                                                                                             0
   59
        42807 1969
                     3
                        1 36.2 21.2
                                      6
                                          0.2
                                                   1013.2
                                                              22.6 20.9 69.0
                                                                                   23 97.0
                                                                                            0
                                                                                               0 1969-03-01 SIGNIFICANT WEATHER
   75
        42807
               1969
                        17
                           34.3 25.4
                                      10
                                          0.0
                                               8.6
                                                   1009.9
                                                               25.2
                                                                   23.8
                                                                         76.0
                                                                                   16 97.0
                                                                                                2
                                                                                                  1969-03-17 SIGNIFICANT WEATHER
                     3
                                                                                             4
    ••••
  19559 42807 2022
                    10
                       13 34.2 25.0
                                          7.1
                                               6.7
                                                   1003.8
                                                               28.4 27.8 88.0 37.4
                                                                                    0 96.0
                                                                                            0
                                                                                               0 2022-10-13 SIGNIFICANT WEATHER
                                       4
  19560 42807 2022 10 14 33.7 26.1
                                      2 17.8
                                               82
                                                  1002.9
                                                               28.0 27.3 87.0 36.3
                                                                                    0 96.0
                                                                                            5
                                                                                              4 2022-10-14 SIGNIFICANT WEATHER
  19565 42807
              2022 10 19 32.4 26.0
                                      4
                                          0.0
                                                0
                                                  1004.2
                                                               28.4 27.7 85.0 37.1
                                                                                    0 96.0
                                                                                            4 4 2022-10-19 SIGNIFICANT WEATHER
  19569 42807 2022 10 23 33.6 24.5 4 0.0 8.8 1002.4 ...
                                                              27.0 26.8 97.0 35.2 0 95.0 4 4 2022-10-23 SIGNIFICANT WEATHER
                                                              Ý
                                     []]
                                            2
                                                                    w
 be here to search
```

Т

Then other necessary feature engineering such as data.info() to understand type of data,list of columns of data presently existing then ,data.describe() to check statistical result ,value counts for significant and clear weather in the whole data set.

'Cl' 'A', 'Dat 'T']	:e',										
۵	Search result	s - Google Drive	× 🗢 Actual ALIPC)RE data (1969-202 🗙	+						- 0
>	C 站	colab.research.c	google.com/drive/10	DdiQleCIAHTtI-DPF	8EpME4kbt72rTs					☆ ひ	s Error
Gmail	★ Bookm	arks G M Sen	t Mail - sumana 🧕	Tata Photon Yahoo	😈 PayUMoney 🔝	Welcome to Indian	🛱 National Train B	inqui 🔀 Train Tim	ne Table 20 📶 BB	BD Bag to Dum D	Google »
	🛆 Actua	I ALIPORE dat	a (1969-2023)lc	gistic rearessi	on paper for flv	er curtain raise	visag 🛧		_	Comment at -	hava 👖 🧖
			intime Tools Helj				j i		Ę	Comment 🔒 S	hare 🏟 🕓
+	Code +	Text								Connect 👻	+ Gemini
	195	70 42807 2022	10 24 31.8 2	2.9 3 2.3 0.8	3 1002.4 2	7.4 26.5 84.0 3	4.6 18 96.0 5	3 2022-10-24	SIGNIFICANT WE	ATHER	
	8326	rows × 22 column	S								
	[] data	.info()									
			.frame.DataFrame	'>							
	11	INDEX 19577 YEAR 19577 MN 19577 DT 19577 MAX 19577 AW 19577 SSH 19577 SSH 19577 SLP 19577 DSH 19577 DBT 19577 DBT 19577 DBT 19577 DBT 19577 DPT 19577	non-null int64 non-null int64 non-null int64 non-null int64 non-null float6 non-null float6 non-null object non-null object non-null object non-null float6 non-null float6 non-null float6	4 4 4 4 4 4							
											•
C) Type he		Q 2023)logistic ols Help <u>Last</u>	regression pa			Visag 🛧			へ 恒 候 (Comment Conne	
Viev Text	w Insert										
Viev Text	w Insert	YEAR	MN	DT	МАХ	MIN	RF	MSLP	DBT	WBT	DPT
Viev Text	w Insert			DT 19577.000000		MIN 19577.000000		MSLP 19577.000000			DPT 19577.000000
View Text	w Insert										
View Text	w Insert t scribe() INDEX 19577.0	19577.000000	19577.000000	19577.000000	19577.000000	19577.000000	19577.000000	19577.000000	19577.000000	19577.000000	19577.000000
View Text a.des ant an	w Insert t scribe() INDEX 19577.0 42807.0	19577.000000 1995.596772	19577.000000 6.517189 1.000000	19577.000000 15.722991	19577.000000 31.691802	19577.000000 22.618036	19577.000000 4.961353	19577.000000 1008.910390	19577.000000 26.283251	19577.000000 23.256985	19577.000000 21.606988
View Text a.des int an %	w Insert scribe() INDEX 19577.0 42807.0	19577.000000 1995.596772 1969.000000	19577.000000 6.517189 1.000000	19577.000000 15.722991 1.000000	19577.000000 31.691802 15.100000	19577.000000 22.618036 7.400000	19577.000000 4.961353 0.000000	19577.000000 1008.910390 0.000000	19577.000000 26.283251 10.800000	19577.000000 23.256985 8.800000	19577.000000 21.606988 -27.100000
View Text	w Insert scribe() INDEX 19577.0 42807.0 42807.0 42807.0	19577.000000 1995.596772 1969.000000 1982.000000	19577.000000 6.517189 1.000000 4.000000	19577.000000 15.722991 1.000000 8.000000	19577.000000 31.691802 15.100000 29.300000	19577.000000 22.618036 7.400000 18.900000	19577.000000 4.961353 0.000000 0.000000	19577.000000 1008.910390 0.000000 1004.100000	19577.000000 26.283251 10.800000 22.800000	19577.000000 23.256985 8.800000 19.400000	19577.000000 21.606988 -27.100000 17.300000
View Text Indes In	w Insert t scribe() INDEX 19577.0 42807.0 42807.0 42807.0	19577.000000 1995.596772 1969.000000 1982.000000 1996.000000	19577.000000 6.517189 1.000000 4.000000 7.000000	19577.000000 15.722991 1.000000 8.000000 16.000000	19577.000000 31.691802 15.100000 29.300000 32.200000	19577.000000 22.618036 7.400000 18.900000 24.600000	19577.000000 4.961353 0.000000 0.000000 0.000000	19577.000000 1008.910390 0.000000 1004.100000 1009.600000	19577.000000 26.283251 10.800000 22.800000 27.800000	19577.000000 23.256985 8.800000 19.400000 25.400000	19577.000000 21.606988 -27.100000 17.300000 24.100000
View Text a.des unt an %	w Insert t INDEX 19577.0 42807.0 42807.0 42807.0 42807.0 42807.0	19577.000000 1995.596772 1969.000000 1982.000000 1996.000000 2009.000000	19577.00000 6.517189 1.000000 4.000000 7.000000 10.000000 12.000000	19577.000000 15.722991 1.000000 8.000000 16.000000 23.000000	19577.000000 31.691802 15.100000 29.300000 32.200000 34.300000	19577.00000 22.618036 7.400000 18.900000 24.600000 26.500000	19577.000000 4.961353 0.000000 0.000000 1.700000	19577.000000 1008.910390 0.000000 1004.100000 1009.600000 1015.100000	19577.000000 26.283251 10.800000 22.800000 27.800000 30.000000	19577.00000 23.256985 8.800000 19.400000 25.400000 27.000000	19577.000000 21.606988 -27.100000 17.300000 24.100000 26.000000

Then understanding the effect of this transformation by filtering data for significant weather by data. describe, value_counts etc. As this is a case of qualitative data analysis, and there are object type data also, so here we used IV (Information Value)method to determine strong ,medium and weak predictors. For this method score value as follows:

The process of data analysis by IV method and the output of scores are as follows:

def calculate woe_iv(dataset, feature, target):
lst = []
<pre>for i in range(dataset[feature].nunique()):</pre>
<pre>val = list(dataset[feature].unique())[i]</pre>
lst.append({
'Value': val,
<pre>'All': dataset[dataset[feature] == val].count()[feature],</pre>
'Good': dataset[(dataset[feature] == val) & (dataset[target] == 1)].count()[feature],
<pre>'Bad': dataset[(dataset[feature] == val) & (dataset[target] == 0)].count()[feature]</pre>
})
dset = pd.DataFrame(lst)
<pre>dset['Distr Good'] = dset['Good'] / dset['Good'].sum()</pre>
<pre>dset['Distr_Bad'] = dset['Bad'] / dset['Bad'].sum()</pre>
<pre>dset['WoE'] = np.log(dset['Distr_Good'] / dset['Distr_Bad'])</pre>
<pre>dset = dset.replace({'WoE': {np.inf: 0, -np.inf: 0}})</pre>
dset['IV'] = (dset['Distr_Good'] - dset['Distr_Bad']) * dset['WoE']
<pre>iv = dset['IV'].sum()</pre>
dset = dset.sort values(by='WoE')
user - user.son c_varues(by- wor)

J	Volume	e: 08 I	ssue: 09 Se	pt - 2024	SJIF Rating: 8.448	ISSN: 2582-3930
			new = pd. new	.concat([d+_r	new, dt_new_2], ignore_	_index=!rue)
	⋺		Feature	IV-Score		
		0	AW	0.263037		
		1	SSH	0.758800		
		2	SLP	0.135565		
		3	VP	0.131694		
		4	DD	0.043778		
		5	CI	0.108874		
		6	А	0.053993		

Result of analysis by IV method as above. Depending on the score value we had to take decision of screening the variables according as the score value and according as the priority of predictor indicated there. The importance was decided as : <0.02 useless ,0.02 to 0.1 weak predictors, 0.1 to 0.3 medium predictors, 0.3 to 0.5 strong predictors.0.5 suspicious .

File Edit View Insert Runtime Tools Help Last saved at 10:32 AM

```
Code + Text
             טט
                  0.043110
              CI
                  0.108874
     5
               А
                  0.053993
     6
[52] data.drop(columns=['DD', 'A'], inplace=True)
53] data.columns
                              'MN',
                                                           'AW',
    Index(['INDEX',
                     'YEAR',
                                                   'MIN',
÷÷
                                                                        'SSH'
                                                                                'SLP',
                                     'DT', 'MAX',
                                                                 'RF',
                             'WBT', 'DPT',
                                           'RH',
                                                         'w',
             'MSLP', 'DBT',
                                                  'VP',
                                                               'Cl',
                                                                      'Date',
                                                                               т'],
           dtype='object')
54]
     data.dtypes
```

According to the score of IV method, we dropped the columns 'DD' and 'A' as these are considered as weak predictors according as the IV method. After IV method, the data file subjected to the process of 'one hot encoding' and label encoding to transform all the data into numeric type and compatible.

International Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

Actual ALIPORE data (1969-2023)logistic regression 🛛 🖈 Comment Edit View Insert Runtime Tools Help Last saved at 10:32 AM RAM ____ de + Text \checkmark Disk ____ 42807 2022 12 26 28.7 20.3 4 0.0 5.4 1015.1 1015.8 23.0 20.6 19.2 79.0 22.2 96.0 0 2022-12-26 0 42807 2022 12 27 28.9 20.7 3 0.0 6.7 1015.7 1016.4 23.6 21.4 20.2 81.0 23.7 96.0 0 2022-12-27 0 19577 rows × 20 columns #one hot encoding col_list=[] for col in data.columns: if((data[col].dtype=='object') & (col!='T')): col_list.append(col) df_2=pd.get_dummies(data[col_list],drop_first=True) for col in df_2.columns: df_2[col]=df_2[col].astype(int) df_2 AW_0 AW_1 AW_10 AW_11 AW_12 AW_13 AW_14 AW_15 AW_16 AW_17 ... Cl_0 Cl_1 Cl_2 Cl_3 Cl_4 Cl_5 Cl_6 Cl_7 Cl_8 Cl_9 0 ... 1 0 ... Connected to Python 3 Google Compute Engine backend Code + Text 4 42807 1969 1 5 27.4 12.6 0.0 1017.6 19.0 13.0 U 5 rows × 834 columns 64] #label encoder from sklearn.preprocessing import LabelEncoder labelencoder=LabelEncoder() for i in col list: data[i]=labelencoder.fit_transform(data[i]) + C 66] data.head()

This time, the columns DATE, INDEX, YEAR, MONTH were discarded, as these parameters would not matter on this type of data analysis of qualitative type. Then to remove the factor of multi-collinearity ,we executed VIF (variation inflation factor) method repeatedly one after another checking output with VIF value and dropping the column with highest VIF value ,each time.


```
data.drop(columns=['Date','INDEX','YEAR','MN','DT'],inplace=True)
```

#vif from statsmodels.stats.outliers_influence import variance_inflation_factor

```
col_list=[]
for col in data.columns:
    if ((data[col].dtype!='object')&(col!='T')):
        col_list.append(col)
X=data[col_list]
vif_data=pd.DataFrame()
vif_data['Feature']=X.columns
vif_data['VIF']=[variance_inflation_factor(X.values,i) for i in range(len(X.columns))]
vif_data

    Feature VIF
0 MAX 231.067895
```

```
1 MIN 69.765153
```

Thus reached the position with predictors having VIF factor 6 and less than 6 and thus ascertained the revised data set.

```
for col in data.columns:
    if ((data[col].dtype!='object')&(col!='T')):
        col_list.append(col)
X=data[col_list]
vif_data=pd.DataFrame()
vif_data['Feature']=X.columns
vif_data['VIF']=[variance_inflation_factor(X.values,i) for i in range(len(X.columns))]
vif_data
```

	Feature	VIF
0	AW	3.613193
1	RF	1.174193
2	SSH	2.335474
3	SLP	2.528825
4	VP	6.272426
5	CI	4.445478

Now with the training and testing data set, with ratio 80%, 20%, formed the test-train split and built logistic regression model and prediction data set.

from sklearn.model_selection import train_test_split

```
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.80,random_state=0
```

pd.DataFrame(x_train)

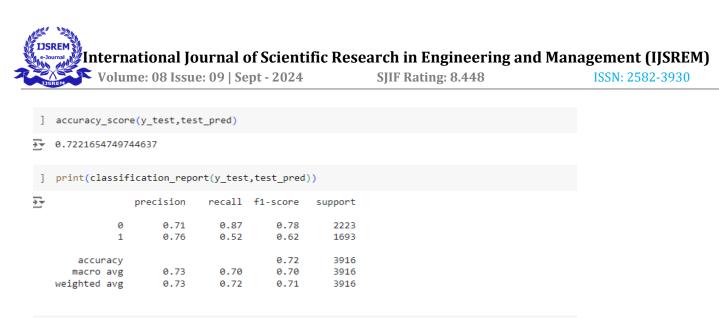
	AW	RF	SSH	SLP	VP	C1
580	22	11.0	71	18	216	8
19058	22	0.0	95	101	201	6
17722	2	0.0	76	29	231	5
2096	21	0.0	116	95	79	1
804	22	22.6	16	78	151	5

File Edit View Insert Runtime Tools Help Last edited on September 1

```
Code + Text
```

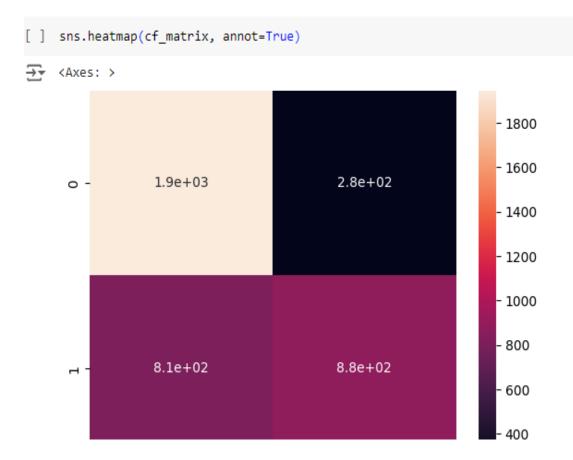
[] from sklearn.linear_model import LogisticRegression

```
[ ] logisticRegr=LogisticRegression()
```


```
[ ] logisticRegr.fit(x_train,y_train)
```

```
→ LogisticRegression
LogisticRegression()
```

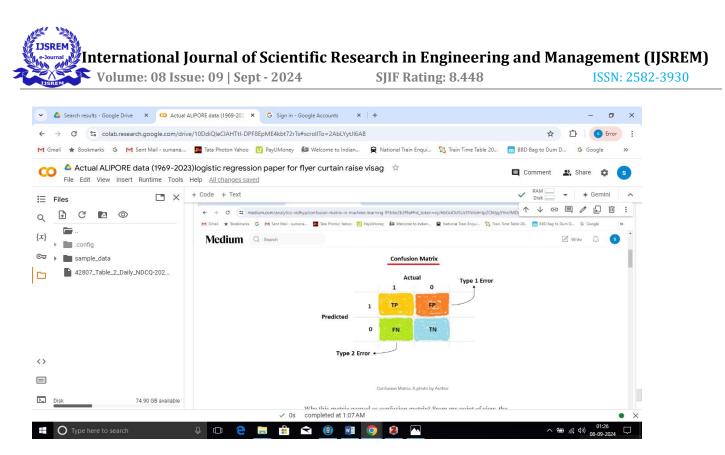
```
[ ] test_pred=logisticRegr.predict(x_test)
```



The accuracy score, classification report, confusion matrix (with true positive, true negative, false positive, false negative), precision, recall ,heatmap were determined accordingly to understand the success rate of the model.

] precision = TP / float(TP + FP)
recall = TP / float(TP + FN)

] #TN= when a case was negative and predicted negative


T

logistic regression paper for flyer curtain raise visag 📩	E Comment	😩 Share 🏾 🇱 🌔
- Code + Text	V RAM	▼ ♦ Gemini
<pre>[114] precision = TP / float(TP + FP) recall = TP / float(TP + FN)</pre>		
[115] precision		
→ 0.8749437696806118		
[116] recall		
.705989110707804		
[117] #TN= when a case was negative and predicted negative #TP= when a case was Postive and predicted Postive #FN= when a case was Postive and predicted Negative # type 1 error #FP= when a case was Negative and predicted Postive #type 2 error		
<pre>[118] #Precision=TP/TP+FP (What propotion of postive identification was actually correct) #recall=TP/TP+FN(What propotion of postive indentify correctly) f1=2/(1/recall+1/precision)</pre>		

The F1 score is : F1 = 2 * precision * recall / (precision + recall). It ranges from 0 to 1, 1 representing perfect precision and recall, and 0 indicates poor performance. Here value of f1 is 0.78, so not so bad performance of model in this research.

Precision and recall value as image shown below:

Citation: Chauhan, Amit/"Confusion Matrix In Machine Learning", Analytics Vidya, 2021.

https://medium.com/analytics-vidhya/confusion-matrix-in-machine-learning-91b6e2b3f9af

✓ ▲ Search results - Google Drive × ∞ Actu	al ALIPORE data (1969-202 × G Sign in - Google Accounts × +	- 0 ×
← → C 😋 colab.research.google.com/d	rive/10DdiQleCIAHTtl-DPF8EpME4kbt72rTs#scrollTo=2AbLYytJl6AB	🖈 🖸 💿 Error
🎽 Gmail 🔺 Bookmarks 🛛 G M Sent Mail - sumana	📴 Tata Photon Yahoo 🚺 PayUMoney 🛛 🌆 Welcome to Indian 🙀 National Train Enqui 🖏 Train Time Table 20	m BBD Bag to Dum D G Google >>>
CO Actual ALIPORE data (1969-20 File Edit View Insert Runtime Tools	223)logistic regression paper for flyer curtain raise visag 🛛 🛱 s Help <u>All changes saved</u>	🔲 Comment 🛛 🏨 Share 🔹 🔵
⊟ Files □ ×	+ Code + Text	✓ RAM → Gemini ∧
	<pre> [129] test_data = {</pre>	
{ <i>x</i> }	'SSH': 5.1,'SLP': 997.8,'VP': 37.4,'Cl': 4 }	
C코 → 🔚 sample_data	<pre>test_df = pd.DataFrame([test_data])</pre>	
42807_Table_2_Daily_NDCQ-202	√ [130] test_df	
	AW RF SSH SLP VP C1 📅	
	0 1.0 0 5.1 997.8 37.4 4	
	<pre>✓ [131] model=LogisticRegression()</pre>	
$\langle \rangle$	√ [132] model.fit(x_train, y_train)	
=	→ LogisticRegression	
Disk 74.90 GB available	LogisticRegression()	
	✓ 0s completed at 1:07 AM	• ×
Type here to search	4 🖸 🤤 🛱 🐋 🕲 🖬 🧿 😣 🔼	へ 🔤 <i>備</i> 🕼 01:31 💭

Prediction of next day weather as below on the basis of input of previous day weather data for the weather parameter as given for test data series as picture shown just above.

model.predict(test_df)

array([0])

As prediction here ,the output was '0' so the predicted weather as derived here as 'clear' weather.

SIGNIFICANCE OF THE STUDY

If with the help of machine learning, the trend of upcoming weather pattern, somehow predicted based on this research study with the help of logistic regression model, then it will be helpful.

Similar as this research study following the research and data analysis pattern, updating data till date, we can get probable weather for few upcoming days. Obviously this would be beneficial for all fields.

TIMELINE Regarding this research study, it must be mentioned the great contribution of the advanced course of 'CCE IIT MADRAS', conducted by 'INTELLIPAAT' completed within one year, consisting of hands-on of 'python data analysis' on zupyter as well as google collaboratory platform, the statistical theory based on these data analysis, and course also with other software like my-sql and power-bi.From this data analysis consisting of different types of analysis pattern, such as pandas, linear regression, logistic regression, decision tree, random forest, time series analysis, tensor flow ,natural language processing, KNN(K-Nearest Neighbour), image recognition etc. This research study is a try of data analysis for predictors are various weather parameters and this is a type of categorical analysis with output as '1' and '0', where '1' considered as all type of 'significant' weather and '0' considered as 'clear' weather. The total time taken is about two years considering course of data-analysis, acquiring ability to understand as well as execute the programme with compatible data to get correct output and the rest is own idea how to form a suitable analysis to predict outcome on the basis of previous knowledge.

Conclusion and future work: In this research design, this was dealt with weather prediction with the help of logistic regression method. The accuracy score, F1 score and the confusion matrix all proved that the performance of the model was good enough . In future this may be applied with the addition of latest appended data to get further more accurate result .The data analysis may be done also with the help of other machine learning tools to compare between ,to get the more accurate output. In future , we can try this by other advanced AI and ML technique with the help of pretrained model and fine tuning.

References:-

1) Singh, H.S.(2023, January 1). The python code file, shared in google drive, by the hands-on faculty Mr Hitesh ,from Intellipaat, Training centre in Bengaluru, Karnataka.

https://colab.research.google.com/drive/1wg8IzcaQeLj_7FLpq23ishdJ3XnQKfbl

2) Srinivasan, Dr Babji. "Note on logistic regression. PDF file received as download in the LMS portal of data analysis training site INTELLIPAAT, 11/12/2022"

Doi 11/12/2022

,Collection of data from "Data India *Meteorological* Department,Pune 3) supply portal ,https://dsp.imdpune.gov.in/"

Format: Author's last name, first name. "Title of the Article." Magazine. Month and year of publication: page numbers.

Bibilography :1) Jayasingh,S.K. et.al "Smart Weather Prediction Using Machine Learning". ResearchGate. May 2022: Pg.571-583

4) Mathur, Saksham .et.al "Prognostication of weather patterns using meteorological data and ML techniques".ResearchArticle . Volume 11,2024.