
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 1

Web Application Vulnerabilities and Best Practices: A

Comprehensive Analysis

1. Abstract:

Web applications are integral to our digital

lives, but they are also prone to numerous security

vulnerabilities that can lead to data breaches,

unauthorized access, and other malicious activities.

This research paper aims to provide a comprehensive

analysis of common web application vulnerabilities

and propose best practices for mitigating these risks.

The study examines a wide range of vulnerabilities,

including SQL injection, cross-site scripting (XSS),

cross-site request forgery (CSRF), and insecure

direct object references. By exploring real-world

examples and conducting in-depth analysis, this

research aims to raise awareness and provide

practical recommendations for developers, security

professionals, and organizations to enhance the

security of their web applications.

2. Introduction:

Every year, there are more and more web-

based programs available. The number of domain

names was approximately 367 million as of the first

quarter of 2020, despite the fact that there are no

statistics on the total number of web applications

currently in use worldwide. From one perspective,

each of these domains could be seen as a static or

dynamic web application.

The domain of software project management

faces ongoing challenges with risk management and

risk assessment. 78 people took part in Demir's [1]

survey on the difficulties in project management.

According to the findings, there were issues

with security and risk control in about one out of

every four projects. Since many enterprise web

applications are integrated within medium- and

large-sized businesses, web-based application

architecture has become widely used in these

organizations.

2.1: Background and significance of web

application security:

In the modern era web applications have

become an integral part of our lives. From online

banking to healthcare management, web applications

enable users to perform a wide range of tasks

conveniently and efficiently. However, the

conveniency comes with many risks. Web

applications are exposed wide variety of security

vulnerabilities. Web applications often handle

sensitive user data, including protected, these data

can be compromised, resulting in identity theft,

financial loss, and reputational damage to both

individuals and organizations.

Pradeep B Tarakar

Department of MCA

Dayananda Sagar College of Engineering

Kumaraswamy layout, Bangalore, India.

Dr. Srinivasan V

Asst professor

Department of MCA

Dayananda Sagar College of Engineering

Kumaraswamy layout, Bangalore, India.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 2

2.2 Research Objectives and Scope:

The current paper's goal is to present an in-

depth evaluation of web applications vulnerabilities

and propose best practices for mitigating these risks.

By examining common vulnerabilities and their

associated impact, the purpose of the article is to

increase awareness of the value of web application

security among a variety of qualified individuals,

including software developers, cybersecurity

specialists, and companies..

The research will focus on identifying and

understanding prevalent web application

vulnerabilities, such as SQL injection, cross-site

scripting (XSS), cross-site request forgery (CSRF),

and insecure direct object references. It will delve

into the techniques employed by attackers to exploit

these vulnerabilities and the potential consequences

for individuals and organizations. Furthermore, this

research paper aims to provide practical

recommendations in the form of best practices for

enhancing web application security. These best

practices including secure coding practices, robust

authentication and authorization mechanisms, input

validation techniques, secure session management,

and regular security assessments.

3. Literature Survey:

3.1 XSS:

In the paper [1] discuss about different types

of XSS vulnerabilities and suggest some ways to

prevent them. The proposed types and prevention

methods are re-Valuated in this research paper.

In another paper [2] discuss about the

security vulnerabilities that might cause due to

generic input validation. And also propose

methodologies to find these vulnerabilities.

3.2 CSRF:

The following papers are related to CSRF

attack. The paper [3] focuses on banking system and

aid in formulating suggestions for banks and users to

make future online banking transactions safer.

[5] in this paper authors proposed and

implemented a new automated tool for the

identification and mitigation of CSRF vulnerability.

3.3 IDOR (Insecure Direct Object References):

Penetration testing on Web Application using

IDOR method: Insecure Direct Object References

(IDOR), a penetration testing technique, are used in

this paper's case study to evaluate the online

application's flaws and vulnerabilities. The URL in

question belongs to the application.

3.4 SQL injection:

The paper [9] conducts experiment using

three extensively adopted open source vulnerable

benchmarks. The method proposed by this paper

indicates 26% reduce in the number of SQLi

attempts.

4. Proposed Methodology

4.1 Key Findings:

Vulnerability in Cyber Security is a flaw in

internal controls, system procedures, or information

systems of an organization. Cybercriminals may

target these weaknesses and use these areas of

weakness to their advantage. Some of the most

common and dangerous attacks include:

4.1.1 XSS Attacks (Cross-Site Scripting)

XSS which is abbreviated to cross-site-

scripting, is the most common exploitation in web

applications. It can control victims to attack other

targeted servers and takeover sessions from users. It

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 3

can also edit, study, and erase company information

from applications running on the internet.

A hacking group called Bantown penetrated the 2

million-user online community LiveJournal in 2006

using the recently reported XSS flaws. In order to

deceive visitors into clicking, the hacker created a lot

of URLs that were infected with malware. Users'

cookies have the potential to be obtained by the

attacker when victims clicked these URLs, and he or

she could then utilize those cookies to log into the

victims' accounts [1].

Types:

1. DOM-based, also called Type-0 XSS. The

exploitation happens on the client side. The

attacker sends a legit-looking link that has

malicious script in it. The victim clicks on it,

makes a request to the actual server, and gets

back the response. Once the response is

received, the malicious script executes and

sends sensitive data to the attacker without

the knowledge of the victim.

2. Stored-XSS: also called Type-1 XSS. where

an attacker sends the server a request. There

is harmful code in the request. The XSS

vulnerable server blindly processes it and

stores it in a database. Thereafter, Every

request received by the server is served with

a malicious script. The script then sends the

sensitive information of the victims to the

attacker. It commonly occurs in forums and

blog sites.

3. Relected XSS: known as Type-2 XSS. The

procedure is comparable to DOM-based

XSS; however, the difference is that the

victim sends the malicious script sent by the

attacker with the link back to the server. The

identical procedure then continues.

Demo:

Fig 1: Stored XSS

 4.1.2 CSRF (Cross-Site request forgery)

Cross-Site Request Forgery (CSRF) is an

attack or method used to carry out unauthorized

operations on a web-based application where people

have been logged in now as members of the public.

A CSRF attack can be carried out with just a little

assistance from social engineering techniques (chat,

visiting a rogue website, or sending a link via email).

CSRF attacks primarily target requests that can alter

the status of an application. There is no method for

the attacker to inspect the response to the faked

requests, and while establishing the target, the

attacker will not take any of the data. [4]

This attack focuses on luring the victim to

submit a malicious request to an authentic server

(like a bank server) to gain financial or other

advantages. Since the browser automatically

includes credentials associated with the site, such as

session cookies and Windows domain credentials,

Therefore, whether a user is signed in right now and

a session has not expired yet, the server will consider

it an authentic request. Due to the absence of a

mechanism on the server that can distinguish

between false and legitimate requests. [4]

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 4

<a

href="http://www.abcbank.com/transfer?from=vic

tim?to=attacker&amount=$100">Click Me!

GET

http://www.abcbank.com/transfer?from=victim?to

=attacker&amount=$100

HTTP 1.1

4.1.3 IDOR (Insecure Direct Object References)

The lack of a complete protective strategy for

sensitive data or resources is represented by the

IDOR, which highlights design defects in the system.

A developer exposes a reference to a database key,

file, directory, or other internal implementation

object as a URL or form parameter when doing a

direct object reference. The attackers may use such

references to gain access to protected data in the

absence of a security check or additional security

measures. Because of the wrong amount of

administrative access to the system data caused by

the lack of authentication level checks, the unsecured

direct object reference simply represents this. This

occurs when developers offer data items through a

web application with the presumption that users

would always abide by the rules of the program.[2]

Case: Let’s consider a bank web application

provides financial data report. The web page is

designed in such a way that the user will not check

others financial data. The url looks something like

this:

http://www.vulnerableBank.com/accounts/viewDeta

il?id=0010

Now, if a user is knowledgeable enough to

understand the URL he/she can simply change the id

value to access others financial report resulting

IDOR attack. In worst case he/she may access other

URL’s and change user details.

Fig: IDOR in action

4.1.4 SQL Injection

In an SQL injection attack, the attacker tries

to put in a malicious string which the database will

interpret and execute. The string can be a malicious

SQL query to get the information back from the

database or to escalate the privilege.

Over a nine-month period, the Web application

attack report recorded an increase in various Web

attacks of about 17% on average [35]. It is noted that

website attacks have become more complicated and

much longer in duration (44% greater than they were

http://www.ijsrem.com/
http://www.abcbank.com/transfer?from=victim?to=attacker&amount=$100
http://www.abcbank.com/transfer?from=victim?to=attacker&amount=$100
http://www.vulnerablebank.com/accounts/viewDetail?id=0010
http://www.vulnerablebank.com/accounts/viewDetail?id=0010

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 5

in past studies), as well as that a typical web-based

application might encounter over 26 attempts in a

minute.

Another security analysis revealed that at

least 8% of the Web services provided by

organizations like Microsoft and Google had various

security flaws.

Popular Types: Tautology, piggy-backed queries,

stored procedures, union query and inference based

attacks.

Ex1: Consider a company server that stores

employee details. To get a employee detail we use

url something like:

http://www.comp.com/employee/employee.esp?id=

1002

Attacker might use URL as shown below to get all

employee details

http://www.comp.com/employee/employee.esp?id=

1002 or 1=1

As a result, SQL query might look something like

SELECT id, name, address, phone

FROM Employee

WHERE id = 999 OR 1=1

Database executes and since 1=1 is true it returns all

employees details.

Ex2: Considering same scenario attacker might use

below url to delete all records

http://www.comp.com/employee/employee.esp?id=

1002; DROP TABLE EMPLOYEE

As a result, SQL query might look something like

SELECT id, name, address, phone

FROM Employee

WHERE id = 999; DROP TABLE employee

4.2 Best Practices Proposed

4.2.1 Mitigating Vulnerabilities:

1. Developing secure code

Software Engineers of mission-critical Web-based

systems ought to use defense-in-depth programming

techniques, taking into account each safety measure

has a chance of failing, to generate code free from

vulnerabilities. During implementation, it is crucial

to use a strategy that relies on multiple layers of

defensive mechanisms since sometimes a single

precaution or defense is not enough to prevent

security flaws.

There are 3 distinct lines of defense: Input validation,

Hotspot protection, and output validation.

2. Input Validation: Only after the intended

software wrongly checks its input data does the

majority of security problems arise. Applications

must consequently treat all inputs—including

information from unreliable sources—as hazardous

until otherwise proven.

As a first line of defense, input validation

reduces the input domain of an application by

operating solely on the values supplied by the user.

This type of defense concentrates on either stopping

the software from running when a user enters a value

that isn't allowed in the domain in question or

demanding that the input parameter fall inside a

given acceptable domain. Starting with normalizing

the inputs to a standard character set and encoding is

http://www.ijsrem.com/
http://www.comp.com/employee/employee.esp?id=1002
http://www.comp.com/employee/employee.esp?id=1002
http://www.comp.com/employee/employee.esp?id=1002%20or%201=1
http://www.comp.com/employee/employee.esp?id=1002%20or%201=1
http://www.comp.com/employee/employee.esp?id=1002;%20DROP%20TABLE%20EMPLOYEE
http://www.comp.com/employee/employee.esp?id=1002;%20DROP%20TABLE%20EMPLOYEE

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 6

recommended for Web applications. The program

must then apply filtering techniques to the

normalized inputs and discard any that contain

beyond the domain parameters. By using this kind of

technique, Web applications that do input validation

using positive pattern matching or positive validation

might prevent several issues.

3. Hotspot Protection: To counteract the

shortcomings of input validation, a second layer of

protection is required. Each attack type focuses on a

hotspot, or a specific group of statements in the

application's code that are vulnerable to a particular

class of flaws. Only important areas are protected by

this supplementary defense, for instance by making

sure the information actually utilized in these lines

falls inside their input area. This contrasts with

generic input validation, where the application

validates or changes inputs within the context of the

entire Web application.

The majority of SQL injection attacks, which

use quote marks, both single and double, are one

specific example. These characters can be used

within a SQL expression using mechanisms provided

by some computer languages, but only to delimit

values in the statement.4

However, these methods have two

fundamental issues. First, these mechanisms can be

gotten over by using more complex injection

techniques, including quoting and escaping

characters together. Second, adding escape

characters lengthens the string and raises its chance

of exceeding the database's maximum length, which

may result in data truncation.

The best method to prevent injection

vulnerabilities is to correctly use parameterized

commands.1 In this instance, the developer

establishes the instructions' structure by utilizing

placeholders to represent the Combining quotation

marks with escaping characters helps get around

these defenses. Second, adding escape characters

lengthens the string and raises its chance of

exceeding the database's maximum length, which

may result in data truncation.

The best method to prevent injection

vulnerabilities is to correctly use parameterized

commands. Under this instance, the developer

defines the commands' structure by utilizing

placeholders to denote the variable values of the

instructions.

Using the command-line translator the

appropriate values appropriately without messing

with as a result of the hierarchy of commands

afterwards, when the software attaches the

appropriate inputs to the command. The most well-

known application of this concept is parameterized

inquiries, often known as database prepared

statements. The structure of a prepared statement is

stored in the database when it is created by an

application.

4.2.2 Defending Attacks

The three primary etiological techniques utilized to

defend web applications from injection attacks are as

follows: Policy Enforcement, Instruction Set

Randomization, and Parse-Tree Validation.

1. Parse-Tree Validation

Parse-tree validation's main principle is to compare

the source code's intended execution's abstracted

syntactic framework with its tree representation to

ensure that it is written as intended. Trees that

diverge indicate that the application is possibly being

attacked.

2. Policy Enforcement

XSS and CSRF attacks are prevented with this

strategy. Developers that implement an architecture

that imposes policies need to set up particular server

level security rules. Syntax-specific preferences,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 7

matching patterns, or JavaScript plugins can all be

used to convey policies. The limits are then put into

effect via a server-side gateway that blocks server

responses or a user's browsers at runtime.

Incorporating rules directly into JavaScript or HTML

code to regulate user behavior is another way to

enforce policies.

In order to look through the HTML of server

answers and identify scripts, BrowserShield

functions as an intermediary on the server-side (Point

StB). It then edits them into secure alternatives to

shield web users from exploits built using known

browser flaws. ConScript, CoreScript, and the Phung

et al. architecture introduce new primitive functions

to JavaScript, offering safe barriers against

potentially harmful JavaScript methods. Every time,

policy enforcement happens on the client side, which

is handled by the browser's JavaScript engine (Point

UB). This would prevent XSS attacks from

succeeding, which combine seemingly innocent

elements into harmful texts by employing popular

methods like write and eval.

3. Symptomatic

Tracking Toxicity:

Using a taint tracking method, such as a parameter

set by a field in a web form, untrustworthy ("tainted")

information is found and its spread through the

software is tracked. A variable is labeled as untrusted

if it is used within an expression which sets another

one, and so on. The scheme could function in line

with the use of any of these factors in a potentially

dangerous behavior (for instance, sending the data to

a vulnerable "sink," such a database, file, or the

network).

Some computer languages, like Perl and Ruby, offer

a way to track taint. This feature would stop Perl

from executing any code that could be used in a SQL

injection attack. (Think about the use of a

contaminated variable in a request) and would end

with a failure.

5. Results and Discussion

With the use of the above-mentioned methodologies

and defense mechanisms we can certainly draw a

good chance of mitigating common security attacks

like XSS, CSRF, IDOR and SQL injection attacks.

The suggested technique offers a methodical and

exacting way to conduct an extensive study of web

application weaknesses and best practices. The study

article uses this methodology in an effort to offer

insightful analysis, suggestions, and directives for

enhancing online application security. The

methodology's important findings are highlighted in

the results and discussion section, highlighting the

completeness and reliability of the research strategy.

6. Conclusion

In order to better understand these crucial

security issues and offer useful suggestions for

enhancing online application security, the research

paper conducted a thorough analysis on web

application vulnerabilities and best practices. This

work has accomplished its goals and made

significant contributions to the field of online

application security using a systematic process that

includes data collecting, analysis methods,

validation, and synthesis.

SQL injection, cross-site scripting (XSS),

cross-site request forgery (CSRF), and unsafe direct

object references were among the common online

application vulnerabilities identified by the research.

These flaws represent serious threats to the privacy,

security, and accessibility of sensitive user data and

may have dire repercussions like unauthorized

access, data breaches, and monetary losses.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 8

By conducting a thorough literature review,

the study identified key methodologies, techniques,

and best practices proposed by researchers and

practitioners to mitigate these vulnerabilities. The

analysis involved a comparative examination of the

selected literature, which revealed patterns, trends,

and emerging issues in web application security. The

development of a conceptual framework facilitated

the organization and categorization of the identified

vulnerabilities and best practices, providing a

structured approach for analysis and presentation.

The validation and evaluation process

involved expert review and real-world case studies,

which served to validate the research findings and

recommendations. Experts in the field of web

application security provided valuable insights and

feedback, enhancing the accuracy and applicability

of the analysis. Real-world case studies highlighted

the impact of vulnerabilities on organizations and

demonstrated the effectiveness of the identified best

practices in mitigating risks.

7. References:

1. Miao Liu; Boyu Zhang; Wenbin Chen; Xunlai

Zhang. A survey of exploitation and Detection

methods of XSS Vulnerabilities.

https://ieeexplore.ieee.org/document/8935148/

2. Debasish Das; Utpal Sharma; D. K. Bhattacharyya

Detection of XSS attack under multiple scenarios.

https://ieeexplore.ieee.org/document/8187802/

3.Gifty Buah; scholastica Memusia; John Munyi;

Timothy Brown; Rober A. Sowah. Vulnerability

Analaysis of Online Banking sites to CSRF attacks.

https://ieeexplore.ieee.org/document/9681978/

4.Muhammad Zulkhairi Zakaria; Rashidah Kadir.

Risk Assessment of Web Application Penetration

Testing on CSRF attacks and server-side

includes(SSI) injections.

https://ieeexplore.ieee.org/document/9617554/

5. W.H. Rankothge; S M. N. Randeniya.

Identification and mitigation Tool for CSRF.

https://ieeexplore.ieee.org/document/9357029/

6. Pratibha Yadav; Chadresh D. Parekh. A report on

CSRF security challenges and prevention

techniques.

https://ieeexplore.ieee.org/document/8275852/

7. Putu Agus Eka Pratama; Alvin Maulana Rhusuli.

Penetration testing on Web Application using IDOR

method.

https://ieeexplore.ieee.org/document/9915074/

8. Identification and Illustration of Insecure Direct

Object References and their Countermeasures

https://www.researchgate.net/profile/Ajay-Shrestha-

5/publication/275043190_Identification_and_Illustr

ation_of_Insecure_Direct_Object_References_and_

their_Countermeasures/links/56a8763008aeded22e3

7a0ec/Identification-and-Illustration-of-Insecure-

Direct-Object-References-and-their-

Countermeasures.pdf

9. Long Zhang; Donghong Zhang; Chenghong wang;

Jing Zhao; Zhenyu Zhang. The art of SQL injection

http://www.ijsrem.com/
https://ieeexplore.ieee.org/document/8935148/
https://ieeexplore.ieee.org/document/8187802/
https://ieeexplore.ieee.org/document/9681978/
https://ieeexplore.ieee.org/document/9617554/
https://ieeexplore.ieee.org/document/9357029/
https://ieeexplore.ieee.org/document/8275852/
https://ieeexplore.ieee.org/document/9915074/
https://www.researchgate.net/profile/Ajay-Shrestha-5/publication/275043190_Identification_and_Illustration_of_Insecure_Direct_Object_References_and_their_Countermeasures/links/56a8763008aeded22e37a0ec/Identification-and-Illustration-of-Insecure-Direct-Object-References-and-their-Countermeasures.pdf
https://www.researchgate.net/profile/Ajay-Shrestha-5/publication/275043190_Identification_and_Illustration_of_Insecure_Direct_Object_References_and_their_Countermeasures/links/56a8763008aeded22e37a0ec/Identification-and-Illustration-of-Insecure-Direct-Object-References-and-their-Countermeasures.pdf
https://www.researchgate.net/profile/Ajay-Shrestha-5/publication/275043190_Identification_and_Illustration_of_Insecure_Direct_Object_References_and_their_Countermeasures/links/56a8763008aeded22e37a0ec/Identification-and-Illustration-of-Insecure-Direct-Object-References-and-their-Countermeasures.pdf
https://www.researchgate.net/profile/Ajay-Shrestha-5/publication/275043190_Identification_and_Illustration_of_Insecure_Direct_Object_References_and_their_Countermeasures/links/56a8763008aeded22e37a0ec/Identification-and-Illustration-of-Insecure-Direct-Object-References-and-their-Countermeasures.pdf
https://www.researchgate.net/profile/Ajay-Shrestha-5/publication/275043190_Identification_and_Illustration_of_Insecure_Direct_Object_References_and_their_Countermeasures/links/56a8763008aeded22e37a0ec/Identification-and-Illustration-of-Insecure-Direct-Object-References-and-their-Countermeasures.pdf
https://www.researchgate.net/profile/Ajay-Shrestha-5/publication/275043190_Identification_and_Illustration_of_Insecure_Direct_Object_References_and_their_Countermeasures/links/56a8763008aeded22e37a0ec/Identification-and-Illustration-of-Insecure-Direct-Object-References-and-their-Countermeasures.pdf
https://www.researchgate.net/profile/Ajay-Shrestha-5/publication/275043190_Identification_and_Illustration_of_Insecure_Direct_Object_References_and_their_Countermeasures/links/56a8763008aeded22e37a0ec/Identification-and-Illustration-of-Insecure-Direct-Object-References-and-their-Countermeasures.pdf

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25165 | Page 9

on vulnerability discovery

https://ieeexplore.ieee.org/document/8716725

10. Xin Xie; Chunhui Ren; Yusheng Fu; Jie Xu;

Jinhong Guo. SQL injection detection for web

applications based on Elastic Pooling CNN

https://ieeexplore.ieee.org/document/8877739/

11. Leena Jacob, Virginia Mary Nadar, Madhumita

Chatterjee. Web Application Security: A Survey

https://ijcsit.com/docs/Volume%207/vol7issue1/ijcs

it2016070196.pdf

12. Nuno Antunes; Marco Vieira. Defending against

web application Vulnerabilities

https://ieeexplore.ieee.org/document/5999632

13. Dimitris Mitropoulos. Defending Against web

application Attacks: Approaches, Challenges and

Implications.

https://ieeexplore.ieee.org/document/7865911

http://www.ijsrem.com/
https://ieeexplore.ieee.org/document/8716725
https://ieeexplore.ieee.org/document/8877739/
https://ijcsit.com/docs/Volume%207/vol7issue1/ijcsit2016070196.pdf
https://ijcsit.com/docs/Volume%207/vol7issue1/ijcsit2016070196.pdf
https://ieeexplore.ieee.org/document/5999632
https://ieeexplore.ieee.org/document/7865911

