
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 1

Web Based Intrusion Detection System for SQLIA

Ayesha Siddiqa1

1 Dept. of Computer Science & Engineering

JNNCE

Abstract - SQL Injection Attack (SQLIA) refers to an

injection attack wherein an attacker can execute

malicious SQL statements that control a web

application’s database server. By leveraging SQL

Injection vulnerability, given the right circumstances, an

attacker can use it to bypass a web application’s

authentication and authorization mechanisms and retrieve

the contents of an entire database. SQL Injection can also

be used to add, modify and delete records in a database,

affecting data integrity. The main idea of our work is to

allow developers the freedom to write and execute code

without having to worry about these attacks. In this paper

we propose a Web Based Intrusion Detection System for

SQLIA to extract a SQL query connecting to database

from a PHP file. The structure of the query under

observation will be converted to XML file and compared

against the legitimate queries stored in the XML file using

association rule mining thus minimizing attacks.

WEBIDS is expected to reduce the time and manual effort

as it only focuses on fragments that are vulnerable for

attacks.

Key Words: XML Rule Mining, PHP, SQL injection,

1.INTRODUCTION

SQL injection is the command consisting of some SQLs

(SQL statements) that are used to control information

within a database. Such website which referring certain

database(s) applies this mechanism: in such a website,

web applications will return the user the results

dynamically reflected when the applications request to the

database according to a user’s inputs. What if the web

application has vulnerability relevant to SQL injection, an

adversary may inject malicious SQL statements so that the

information within that database may be manipulated

fraudulently This malicious accessing method is

specifically referred as SQL injection attack.

 Database-driven web applications have become

widely deployed on the Internet, and organizations use

them to provide a broad range of services to their

customers. These applications, and their underlying

databases, often contain confidential, or even sensitive,

information, such as customer and financial records.

However, as the availability of these applications has

increased, there has been a corresponding increase in the

number and sophistication of attacks that target them. One

of the most serious types of attack against web

applications is SQL injection. In fact, the Open Web

Application Security Project (OWASP), an international

organization of web developers, has placed SQL injection

attack (SQLIA) at the top of the top ten vulnerabilities that

a web application can have [1]. Similarly, software

companies such as Microsoft have cited SQLIAs as one of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 2

the most critical vulnerabilities that software developers

must address [2]. As the name implies, this type of attack

is directed toward database layer of the web applications.

Mechanism of SQL injection is illustrated in Fig.1 [3]

In this paper, we propose a System that combines the two

IDS techniques, Embezzle and Eccentricity detection

techniques, to defend against SQLIA. The main idea of

Web Based Intrusion Detection system (WEBIDS)

framework is to create a profile for web application that

can represent the normal behavior of application users in

terms of SQL queries they submit to the database.

Database logs can be used to collect these legitimate

queries provided that these logs are free of intrusions. We

then use an Eccentricity detection model based on data

mining techniques to detect queries that deviates from the

profile of normal behavior. The queries retrieved from

database log are stored in XML file with predefined

structure. We choose XML format because it is more

structured than flat files, more flexible than matrices,

simpler and consume less storage than databases.

 Association rules will be applied to this XML file to

retrieve relation between each table in the query with each

condition in the selection part. These rules represent the

profile of normal behavior and any deviation from this

profile will be considered attack. In order to better detect

SQLIA and to minimize false positive alerts, WEBIDS

system as a second step uses misuse technique to detect

any change in the structure of the query. Malicious users

sometimes don’t change the selection clause but add

another SQL statement or add specific keywords to the

initial query to check the vulnerability of the site to

SQLIA or to perform inference attack. Such types of

attack are detected in the second step of the detection

process. By comparing the structure of the query under

test with the corresponding queries in the XML file the

previous malicious actions will be detected.

This paper is organized as follows. Section II, includes

some related work in web application Vulnerability

domains. Section III, provides a detailed description about

the System and its components. In Section IV, Results and

Discussions. Section V concludes the paper and outlines

future work.

II. Literature Survey

 Different researches and approaches have been

presented to address the problem of web attacks against

databases. Considering SQLIA as top most dangerous

attacks, as stated in section I, there has been intense

research in detection and prevention mechanisms against

this attack [4, 5].

A general framework for detecting malicious database

transaction patterns using data mining was proposed by

Bertino et al. in [6, 7] to mine database logs to form user

profiles that can model normal behaviors and identify

anomalous transactions in databases with role based

access control mechanisms. The system is able to identify

intruders by detecting behaviors that differ from the

normal behavior of a role in a database. Kamra et al. in

[8] illustrated an enhanced model that can also identify

intruders in databases where there are no roles associated

with each user. It employs clustering techniques to form

concise profiles representing normal user behaviors for

identifying suspicious database activities. Another

approach that checks for the structure of the query to

detect malicious database behavior is the work of Bertino

et al. in [9]. They proposed a framework based on

anomaly detection technique and association rule mining

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 3

to identify the query that deviates from normal database

application behavior.

 The problem with this framework is that it

produces a lot of rules and represents the queries in very

huge matrices which may affect tremendously on the

performance of rule extraction. Misuse detection

technique have been used by Bandhakavi et al. in [10] to

detect SQLIA by discovering the intent of a query

dynamically and then comparing the structure of the

identified query with normal queries based on the user

input with the discovered intent. The problem with this

approach is that it has to access the source code of the

application and make some modifications to the java

virtual machine.

 Recently, applicability and scalability of model

checking approaches in the domain of web applications

started being explored by the research community. In

particular, in 2008, a work describing the QED system

was published [11]. QED identifies XSS and SQL

injection vulnerabilities that arise as a result of the

interaction of multiple modules of a servlet-based web

application. The system uses explicit model checking to

find XSS and SQL injection vulnerabilities and uses a

number of heuristics to scale the approach to large

applications. To find vulnerability, the tool needs to be

supplied with a specification of a vulnerability (written in

SQL) and a set of inputs to the application under test.

Then, the Java Pathfinder [12] model checker is used to

execute the application using a sequence of user requests

that are generated based on user input values provided by

an analyst. Vulnerability is found when a match to a SQL

query is found by the model checker. In general, the

approach proposed in this work can be applied to detect

vulnerabilities other than taint-based ones if an analyst is

able to provide the tool with a specification of a

vulnerability specifying patterns of events (such as

program method calls) that need to occur on a program

path.

 Hal fond et al. in [13] developed a technique that

uses a model-based approach to detect illegal queries

before they are executed on the database. In its static part,

the technique uses program analysis to automatically

build a model of the legitimate queries that could be

generated by the application. In its dynamic part, the

technique uses runtime monitoring to inspect the

dynamically-generated queries and check them against

the statically-built model. The system WASP proposed

by William et al. in [14] tries to prevent SQL Injection

Attack by a method called positive tainting. In positive

tainting, the trusted part of the query (static string) is not

considered for execution and masked as tainted, while all

other inputs are considered. The difficulty in this case is

the propagation of taints in a query across function calls

especially for the user defined functions which call some

other external functions leading to the execution of a

tainted query. Different other researches followed the

same approach in detection of anomalous SQL query

structure in [15, 16].

 The contribution of this paper is a System that

combines Eccentricity and Embezzle detection technique

in order to better detect SQLIA. This System uses

association rules with Eccentricity technique to build the

normal behaviour of application users and detecting

anomalous queries. Moreover, A technique is used to

check the structure of the query to detect any malicious

actions that cannot be detected using detection technique

III. Proposed Method

WEB Based IDS framework is a database intrusion

detection that aims to detect SQLIA at real-time, before

queries execution at the database. WEBIDS is simple and

really easy to implement. During this technique all the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 4

data validations rules are going to be during a secure place.

The data validation rules also will be organized into some

XML format and that they are referred to as XML-rules.

Whenever server receives any input from client the server

can verify the whole XML script supported the

verification rules already written within the server. XML-

rules are going to be written on an individual basis for

every kind of incoming XML scripts and therefore the

incoming XML script should succeed the validation

method. This method can primarily divide the data

validation of a web application from the application

development division. The developer at present ought not

to worry about the SQL injection attacks and data

validity. The validation parts of data are going to be

maintained by a separate cluster which can manage the

XML-rules. This is often conjointly useful as a result of

the traditional web developers are going to be utterly

unaware regarding the safety rules of the application.

WEB based IDS framework combines the two detection

techniques: Abnormality and Invade. Figure 2 explains

the essential flow of WEBIDS. In a PHP file the database

connecting query is fetched and can submit the query then

rather than submitting straightforward data, it'll submit all

the data in XML format.XML file of query tokens is

compared with XML rules by performing the validation.

If the validation is false, then it will flag the injection if

true it will execute the query.

The key idea of our system is as follows. We build a

repository containing set of legitimate queries submitted

from the application user to the database. This repository

is a set of training records. We then use an Abnormality

detection approach based on data mining technique to

build a profile of normal application behavior and indicate

queries that deviates from this normal behavior.

In a second step in the detection process, the

framework checks for the presence of dangerous

keywords in the query if the latter passes the test of

Abnormality detection step. We need this step because

sometimes the intent of the attacker is to identify the

security holes in the site or to infer the structure of the

database through the error message returned from the

application and this type of SQLIA is called inference [17,

18]. This type of attack cannot be detected through

eccentricity technique because it doesn’t require change in

the conditions of the original query but it will be

discovered if the structure of the query is compared

against its corresponding query in the repository file.

Based on what previously stated we learn that the

System act in two phases: training phase and detection

phase. In the training phase the repository file will be

created and normal behavior of the application is built. In

the detection phase, the framework uses the Eccentricity

and Embezzle techniques to discover any SQLIA. In the

following subsections we will provide a detailed

explanation of the System, its components and how it

works.

Training Phase

During the training phase the training records are

collected from the queries the application send to the

database. The source for obtaining these query traces is

the database log provided that the latter is free of

intrusions. The training phase flow is illustrated in Fig. 3.

The challenge here is that to efficiently encode these

queries in order to extract useful features from them and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 5

accordingly build the application fingerprint. Unlike

approach provided in [19], we choose to encode the

queries in XML file. The encoding scheme provided by

Bertino et al. in [19] result in a large, dense, sparse

matrices which may effect on the mining algorithm. XML

is more structured than flat files, is supported by query

tools like XQuery and XPath to extract data [20]. It is

simpler and consumes less space than relational databases

and more flexible than matrices.

It is important to identify accurately the structure of

the XML file that will represent the features extracted

from the query that will contribute in building the

application fingerprint. Consider the following query:

Select SSN, last_name from employee

where first_name=’Suzan’ and

salary>5000

The encoding scheme of the previous query in XML

file is illustrated in Fig. 4. The main advantage of XML

format is that nodes may be duplicated upon need. For

example the number of “project attribute” node may

differ from one “Query” node to another depending on

the query itself. This is why it is more suitable to store

queries than databases while maintaining flexibility and

simplicity.

The XML file illustrated in Fig. 4 stores the projection

attributes, the from clause and the predicate clause in a

more detailed way. It is not important to identify the value

of the integer or string literal it is important to determine

that there is an integer or string literal or there is another

attribute in the right hand side. Another file that should

be created during the training phase is the signature file

that will be used during the

misuse detection phase. As stated before this file

contains suspicious keywords that may be considered a

sign of SQLIA.

The important step in the training phase is to build the

profile representing the application normal behavior. We

will apply association rules [21] on the XML file to

extract rules that represent the normal behavior of

application users. The rules extracted represent

relationship between each table in the query with each

predicate in the selection clause.

This is based on an observation that the static part of

the query is the projection attribute and the part that is

constructed during execution is the selection part [19].

We here add another item to the static part which are the

tables in the from clause. We try to make relation between

the static part and the dynamic part and extract rule with

support of such relation. Any query that will not match

rules extracted and stored in the rules profile will be

considered attack. More details about how the rules are

extracted are provided in the following subsection.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 6

Abnormality Detection Phase

In the previous subsection, we illustrated how the

begin queries are collected and captured in XML file in a

form enabling the framework from creating the database

behavior profile. We apply association rules on the XML

file containing legitimate queries and extract rules that

can describe the normal behavior of application users.

The idea behind building the profile rule is to apply one

of association rules algorithms on previously created

XML file to extract relation between each table in the

query with each selection attribute excluding the literals.

Thus the rules extracted have the following format:

 From LHS

 From RHS

Example:

 Employee name

 Employee place

The rules that exceed the minimum support will be

stored in rules profile. These rules represent the profile of

how the application behaves normally. In a typical

database application, the input supplied by the user

construct the where clause of the query. Meanwhile, the

projection clause and the from clause remain static at the

run time. So we create a relation between the static and the

dynamic part of the query and any change in the where

clause by attackers that cannot be derived from the rules

profile will be announced as SQLIA. We decided to

choose the tables in the from clause from the static part of

the query instead of the projection attributes because the

former is more general and contain the latter and thus

generating less rules and make it easier in comparison.

Lets return to our query in the previous subsection and

change it a little bit: select SSN, lname from employee

where name=’ “& fname &” and place= “ & emplace”. If

the attacker needs to retrieve all values from employee

table then the following code will be injected to form this

new query:

Select SSN, lname from employee where name=’’ or

1=1

Before executing this query, rules should be extracted

first and compared to the rules in the rules profile. The

relation between tables and attributes will be compared

against rules stored in the profile rules file. The two

relations under test from the previous example are:

Employee name

Employee 1

The first relation exists in the rules profile but no such

rule matches the second relation. So the query is

announced as Eccentric query.

Invade Detection Phase

 In a second step in the detection process and after the

Eccentricity detection phase, comes the role of

Embezzle detection. The need to this step comes from

the fact that SQLIA doesn’t only change the conditions

in the query but it also may provide information about

the database schema or check the vulnerability of the

application to SQL injection. This is done through

adding to the query some keywords that may change

the behavior of the query or return information about

the database through database errors without

changing the predicates of the query. In such case, the

Eccentricity detection phase will not be able to

discover such attack. For example consider the

following query:

 Select * from employee where SSN=10

If the attacker just adds a single quote at the end

of the query, this will result in error message that may

inform the attacker that the site is vulnerable to

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 7

SQLIA. Another example of attack is just adding the

keyword “order by” to the query without changing

the selection attributes like:

Select * from employee where SSN=10 order

by 1

Trying to execute this query several times will give

attacker information about the number of attributes in the

table. This is why this step is needed in the detection

process. Moreover, the framework doesn’t announce the

query as anomaly just by finding these keywords in the

query because it may be part of the legitimate query itself

resulting in false positive alarm. This is why the

framework checks for the structure of the query under test

with the corresponding query stored in XML file. The

detection phase flow of the framework in Fig. 5 illustrates

this process.

 These suspicious keywords are stored in file

called “forbidden keywords”. This file contains SQL

keywords like single quote, semicolon, union, order by,

exec and their hexadecimal representation to avoid the

different evasion techniques. After confirming the

existence of one or more of these keywords, we use

XQuery to retrieve queries from XML file with the same

projection attributes and same from clause. Then

comparison is done between query under test and the

queries retrieved by XQuery from XML file. If there is no

match, then the query is announced Eccentric.

IIV. Results and Discussions

 In this section we present results and discussions

for eccentricity and embezzle detection. In addition, we

provide a working example illustrating how the WEBIDS

framework performs the detection.

A. Working Example

We provide in this subsection example of the flow of

detection either Eccentricity or Embezzle in this

framework. The following represents example of php file

submitted from application to the database:

<?php

 $name=$_REQUEST['t1'];

mysql_connect("localhost","pw","jnnce");

 mysql_select_db("user");

 $res=mysql_query("select * from

contact where name='$name'");

…………….

…………….

……………..

 Fig 6 Query is Fetched and converted to

XML

In Figure 6 the query is fetched from a php file and

Converted to XML

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 8

The following represents example of queries submitted

from application to database:

• Select * from Employee where name=$name;

• Select * from Employee where place=$place;

• Select * from Employee where

salary=$salary;

The representation of the previous queries in XML file

is illustrated in Fig. 7.

Fig 7 Representation of Query

After applying association rule algorithm like for

example Priory on this XML file, the resulting rules will

be stored in rules profile file in Fig. 7.

Association rules for these definition queries will be

as follows:

Employee name

Employee place

Employee salary

These rules will be compared with the actual query

association rule. Hence the vulnerability is checked.

Example:

 Select * from Employee where name=Mohan;

Employee name

 This query will be ACCEPTED as it matches

with the first definition.

Example:

 Select * from Employee where A=A;

Employee A

This query will be DISCARDED since it is not

matched by any definition.

 Accept and discard format is demonstrated in Fig 8.

 Fig 8 Example of Accept and Discard

In the following we will provide sample of malicious

and legitimate queries.

 Select product_name, description from product where

product_id=5’

The first step in the framework is to identify relation

between tables and selection attributes in the query.

Product product_id

Second, the framework searches in the rules profile for

this relation. It already exists. But this is not the end of

the detection flow. The second step is to check for

suspicious keywords in the query. The query already

contains one of the suspicious keyword which is single

quote.

So XQuery language is used to extract queries from

the XML file with same projection attributes and same

from clause. By comparing the structure of the query

under test and query returned from the XML file we will

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 9

find that query contain the single quote and thus it is

announced as Eccentric.

 V. Conclusion and Future Work

Database intrusion is a major threat to any

organization storing valuable and confidential data in

databases. We have introduced a System based on

Eccentricity and Embezzle detection for discovering

SQLIA. Detection is done by validating the SQL queries

using general validation procedure based on XML rules

and the nature of the injection type. The concepts

explained in this work assist the Developer to modify the

SQL statements and make the code attack free. We

conclude by highlighting the robust features of the

efficient WEBIDS, which can detect the error during the

development statically and can protect web applications

from the future SQL injection.

We believe that the ideas presented in this research

work can be further extended to include new injection

types to include detection against other attacks like cross

site scripting. This work also paves way for the

development of vulnerability detection services, which

can be used by developers to detect vulnerability spots in

the source code. We feel the area of SQL injection

vulnerabilities is wide open for research.

Acknowledgment

 We Thank Chetan K R for valuable insights and

support at the Implementation and as a reviewer for the

helpful and thorough feedback received.

References

[1] http://www.owasp.org/index.php, OWASP Top 10-

2010 document

[2] M. Howard and D. LeBlanc, “Writing Secure Code”,

Microsoft Press,2002

[3] http://www.ipa.go.jp/security/english/virus/press/20

0805/E_PR200805.html

[4] Kindy, D.A.; Pathan, A.K, “A survey on SQL

injection: Vulnerabilities, attacks, and prevention

techniques”, in proceedings of IEEE 15th

International Symposium on Consumer Electronics

(ISCE), 2011

[5] N. Khochare, S. Chalurkar ,S. Kakade, B.B.

Meshramm, “Survey on SQL Injection attacks and

their countermeasures”, International Journal of

Computational Engineering & Management

(IJCEM), Vol. 14, October 2011

[6] Bertino, E., Kamra, A, Terzi, E., and Vakali, A,

“Intrusion detection in RBAC-administered

databases”, in the Proceedings of the 21st Annual

Computer Security Applications Conference, 2005.

[7] Kamra A, Bertino, E., and Lebanon, G.,”Mechanisms

for Database Intrusion Detection and Response”, in

the Proceedings of the 2nd SIGMOD PhD Workshop

on Innovative Database Research, 2008

[8] Kamra A, Terzi E., and Bertino, E.,“Detecting

anomalous access patterns in relational databases”,

the VLDB Journal VoU7, No. 5, pp.1063-1077, 2009

[9] Bertino, E., Kamra, A, and Early, J., “Profiling

Database Application to Detect SQL Injection

Attacks”, In the Proceedings of 2007 IEEE

International Performance, Computing, and

Communications Conference, 2007.

[10] Bandhakavi, S., Bisht, P., Madhusudan, P., and

Venkatakrishnan V.,

http://www.ijsrem.com/
http://www.owasp.org/index.php
http://www.ipa.go.jp/security/english/virus/press/200805/E_PR200805.html
http://www.ipa.go.jp/security/english/virus/press/200805/E_PR200805.html

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26708 | Page 10

“CANDID: Preventing sql injection attacks using

dynamic candidate evaluations”, in the Proceedings

of the 14th ACM Conference on Computer and

Communications Security, 2007

[11] M. Martin and M. Lam. Automatic Generation of

XSS and SQL Injection At-tacks with Goal-Directed

Model Checking. In Proceeding of the 17th USENIX

Security Symposium, pages 31–43, July 2008

[12] Java pathfinder.

http://javapathfinder.sourceforge.net/

[13] Halfond, W. G. and Orso, A , “AMNESIA: Analysis

and Monitoring for Neutralizing SQL-Injection

Attacks”, in Proceedings of the 20th

IEEE/ACM international Conference on Automated

Software Engineering, 2005

[14] William G.J. Halfond, Alessandro Orso, and

Panagiotis Manolios, “WASP: Protecting Web

Applications Using Positive Tainting and Syntax-

Aware Evaluation”, IEEE Transactions on Software

Engineering, Vol. 34, No. 1, pp 65-81, 2008

[15] Buehrer, G., Weide, B. w., and Sivilotti, P. A, “Using

Parse Tree Validation to Prevent SQL Injection

Attacks”, in Proceedings of the 5th international

Workshop on Software Engineering and Middleware,

2005

[16] Liu, A, Yuan, Y., Wijesekera, D., and Stavrou, A,

“SQLProb:A Proxy-based Architecture towards

Preventing SQL Injection Attacks”, in Proceedings of

the 2009 ACM Symposium on Applied Computing,

2009

[17] W.G.Halfond, J.Viegas, and A.Orso, “A

classification of SQL-Injection Attacks and

Countermeasures”, in proceeding of the International

Symposium on Secure Software Engineering

(ISSSE), 2006

[18] David Litchfield, “Data-mining with SQL Injection

and Inference”,An NGSSoftware Insight Security

Research, September 2005

[19] Bertino, E., Kamra, A, and Early, J., “Profiling

Database Application to Detect SQL Injection

Attacks”, In the Proceedings of 2007 IEEE

International Performance, Computing, and

Communications Conference, 2007

[20] World Wide Web Consortium. XQuery 1.0: An XML

Query Language (W3C Working Draft).

http://www.w3.org/TR/2002/WDxquery-20020816,

Aug. 2002.

[21] Han J., Kamber M., “Data Mining: Concepts and

Techniques”, Maurgan Kaufmann,2ndedition,2000

http://www.ijsrem.com/
http://javapathfinder.sourceforge.net/
http://www.w3.org/TR/2002/WDxquery-

