
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 1

WEB LANGUAGE DETECTION USING MACHINE LEARNING

Abstract- Web page language detection using

machine learning and Flask is a pivotal application that

combines the strengths of machine learning algorithms

and the Flask web framework to automatically identify

the language of web content. Machine learning models,

trained on diverse multilingual text datasets, analyze

linguistic and statistical features to predict the language

of a given text. Flask, a lightweight Python web

framework, simplifies the deployment of this language

detection model as a web service. The integration of

machine learning and Flask offers numerous

advantages for web developers and content managers.

Machine learning models excel in accurately

identifying languages, even in the presence of

multilingual or short text snippets, enhancing the user

experience. Flask's modularity and ease of use make it

an ideal platform for integrating the language detection

model into web applications and websites.

INTRODUCTION- In the rapidly evolving realm of

technological advancements, the amalgamation of

machine learning (ML) and web development has given

rise to groundbreaking applications, and among these,

the Webpage Language Detection system stands out as

an exemplar of innovation. This sophisticated fusion of

ML algorithms with the Flask web framework not only

enhances user experiences but also addresses the

intricate challenge of deciphering the language in

which a given text is written.

At its fundamental core, language detection involves

the intricate task of discerning the linguistic origins of

a given text, and machine learning serves as the pivotal

engine propelling this process forward. To initiate this

complex journey, developers typically curate a diverse

dataset encompassing text samples from a myriad of

languages. It is within this diverse dataset that ML

models find their training ground, learning patterns and

features unique to each language. Renowned libraries

such as scikit-learn or TensorFlow play instrumental

roles in facilitating the training process, empowering

developers to craft robust language detection models.

Prof. Kiran Kumar

Professor, Malla Reddy University

Hyderabad

drkirankumar@mallareddyuniversity.ac.in

 CH. Hemasree

Student, Malla Reddy University

Hyderabad

2011cs020075@mallareddyuniversity.ac

.in

CH. Jayashree

Student, Malla Reddy University

Hyderabad

2011cs020076@mallareddyuniversity.ac

.in

CH. Jeevan Santhosh

Student, Malla Reddy University

Hyderabad

2011cs020077@mallareddyuniversity.ac

.in

CH .Nihanth

Student, Malla Reddy University

Hyderabad

2011cs020078@mallareddyuniversity.ac

.in

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 2

The Flask web framework, celebrated for its simplicity

and adaptability, provides an optimal environment for

seamlessly integrating ML models into web

applications. In the context of Webpage Language

Detection, Flask empowers developers to construct a

user-friendly interface where individuals can

effortlessly input text. This, in turn, triggers the ML

model to swiftly analyze the content, returning accurate

identifications of the language used. The fluid

communication between the front-end and back-end

components underscores Flask's efficiency in handling

diverse web development tasks.

The resulting synergy between machine learning and

Flask yields an accessible and interactive tool, allowing

users to input text on a webpage and receive prompt

analyses of the detected language. The applications of

this integration are diverse, ranging from facilitating

content localization on websites to aiding language

learners in identifying and comprehending unfamiliar

text.

In conclusion, the convergence of machine learning and

Flask has birthed a transformative solution in the form

of Webpage Language Detection, exemplifying the

power of modern technology to transcend conventional

boundaries and offer users an immersive experience

with intelligent web applications.

Literature Survey

N-gram Based Approaches:

Many studies employ n-gram models to capture

language-specific patterns. These models analyze

sequences of characters or words, extracting features

that are indicative of particular languages.

Statistical Methods:

Statistical techniques, such as language models based

on Markov chains or entropy, have been used for

language detection. These methods analyze the

distribution of characters or words in a text to make

predictions.

Supervised Learning:

Supervised learning techniques involve training models

on labeled datasets, where the language of each text is

known. Common algorithms include Support Vector

Machines (SVM), Naive Bayes, and decision trees.

Neural Networks:

Deep learning models, particularly recurrent neural

networks (RNNs) and more recently transformer-based

architectures like BERT, have shown success in

language detection tasks. These models can

automatically learn hierarchical features and

dependencies.

Cross-Lingual Transfer Learning:

Transfer learning approaches, where models pretrained

on large multilingual datasets are fine-tuned for specific

languages, have demonstrated effectiveness in web

language detection.

Ensemble Methods:

Combining multiple models through ensemble

methods, such as bagging or boosting, can enhance the

overall accuracy and robustness of language detection

systems.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 3

Unsupervised Learning:

Unsupervised learning techniques, like clustering

algorithms, have been explored for web language

detection, where the model identifies language patterns

without explicit labeled training data.

Evaluation Metrics:

Studies commonly use metrics such as precision, recall,

F1 score, and accuracy to evaluate the performance of

language detection models. Cross-validation and

testing on diverse datasets are essential for

comprehensive assessments.

Challenges and Future Directions:

Challenges include handling multilingual content,

addressing code-switching, and adapting to evolving

languages. Future directions may involve exploring

more advanced neural network architectures,

incorporating contextual embeddings, and enhancing

robustness against noisy data.

EXISTING SYSTEM:

The existing system for web page language detection

typically relies on statistical and linguistic methods to

identify the language of a web page or text content. It

often involves rule-based heuristics, character-based n-

grams, or simple language frequency analysis. While

these methods can work reasonably well for common

and widely-used languages, they may struggle with

accurately detecting less common languages, dialects,

or multilingual content. The existing systems may also

lack the ability to be deployed as web services or APIs

easily, which limits their integration into web

applications. Consequently, there is a need for more

robust and automated solutions like the proposed

project that leverage machine learning, specifically the

Naive Bayes algorithm, and Flask for improved

accuracy and real-time language detection services.

The existing systems often rely on rule-based

approaches, where predefined rules and patterns are

used to identify the language of web pages. These rules

may include character n-grams, dictionary lookups, and

language-specific features, but they can be limited in

accuracy and adaptability. Some systems utilize

statistical methods, such as language frequency

analysis, to estimate the language of a web page. While

these methods can provide reasonably accurate results,

they may struggle with mixed-language content and

might not be suitable for low-resource languages

PROPOSED SYSTEM:

The proposed methodology involves training a

language detection model using a diverse dataset

encompassing text samples from various languages.

Machine learning libraries such as scikit-learn or

TensorFlow will be employed to facilitate the training

process, enabling the model to learn linguistic patterns

and features specific to each language. Once trained,

the model will be integrated into a web application

using the Flask framework. The Flask app will feature

a user-friendly interface where individuals can input

text for language detection. Upon submission, the input

text will be processed by the machine learning model,

and the detected language will be displayed to the user.

This methodology ensures the seamless interaction

between the front-end and back-end components,

offering an efficient and accurate Webpage Language

Detection system to enhance user experiences.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 4

Advantages:

1. High Accuracy: With a well-trained Naive Bayes

model and a diverse training dataset, the system can

achieve high accuracy in language detection. It can

effectively distinguish between various languages,

even when dealing with short text snippets or

multilingual content.

 2. Real-Time Detection: The integration with Flask

allows for real-time language detection, making it

suitable for web applications, content management

systems, and other scenarios where immediate

language identification is crucial for user experience

and content relevance.

 3. Multilingual Support: The system should be

capable of supporting a wide range of languages

commonly found on the internet, improving its

applicability in a global context.

4. User-Friendly Interface: The Flask-based web

service provides a user-friendly and accessible

interface for language detection, making it convenient

for both developers and end-users.

5. Scalability: Depending on the server infrastructure,

the system can be scaled to handle a large volume of

requests efficiently.

6. Continuous Improvement: Regular updates to the

model and training data ensure that the system remains

accurate and adapts to evolving web content and

emerging languages.

ALGORITHM:

Start:

Begin the process of creating a Webpage Language

Detection system.

Importing the Datasets:

Import a diverse dataset containing text samples from

various languages.

The dataset should include labeled examples of text and

their corresponding languages.

Create Training and Testing Datasets:

Split the dataset into training and testing sets to evaluate

the model's performance.

Preprocess the text data by cleaning and tokenizing.

Feature Extraction:

Convert the preprocessed text data into numerical

features suitable for the Naive Bayes algorithm.

Use techniques like TF-IDF (Term Frequency-Inverse

Document Frequency) for feature extraction.

Building and Training the Naive Bayes

Model:

Choose a Naive Bayes algorithm (e.g., Multinomial

Naive Bayes) suitable for text classification.

Train the Naive Bayes model using the training dataset

and its corresponding labels.

Flask App Development:

Create a Flask web application to deploy the trained

Naive Bayes model.

Set up routes and templates for user interaction.

Establish a user-friendly interface for in putting text.

User Input Processing:

Develop a route in the Flask app to handle user input.

Preprocess the user-input text to align with the training

data preprocessing.

Language Prediction:

Integrate the trained Naive Bayes model into the Flask

app.

Use the model to predict the language of the user-input

text.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 5

Display Results:

Return the detected language and relevant information

to the user interface for display.

End:

Conclude the algorithm after completing the steps for

building and deploying the Webpage Language

Detection system using Naive Bayes and Flask.

METHODOLOGY:

1. Data Collection and Preparation:

Collect Dataset: Gather a diverse dataset containing

text samples in different languages.

Data Cleaning: Preprocess the dataset by removing

any irrelevant characters, symbols, or special

characters.

Labeling: Ensure that each text sample is labeled with

its corresponding language.

2. Data Splitting:

Train-Test Split: Divide the dataset into training and

testing sets. Typically, an 80-20 or 70-30 split is

common.

3. Feature Extraction:

Text Vectorization: Use techniques like TF-IDF to

convert the text data into numerical features.

Tokenization: Tokenize the text to break it into

individual words or tokens.

4. Model Training:

Choose Naive Bayes Algorithm: Select a suitable

Naive Bayes algorithm for text classification, such as

Multinomial Naive Bayes.

Model Training: Train the Naive Bayes model using

the training dataset.

5. Flask Application Setup:

Create Flask App: Set up a Flask application with the

necessary files and folders.

Define Routes: Establish routes to handle different

functionalities (e.g., input page, result page).

HTML Templates: Develop HTML templates for user

interfaces, including forms for text input.

6. Model Integration with Flask:

Load Trained Model: Integrate the trained Naive

Bayes model into the Flask application.

Predict Function: Create a function to take user-input

text, preprocess it, and use the model for language

prediction.

7. User Input Processing:

Form Handling: Implement a route to handle user

inputs from the web interface.

Text Preprocessing: Preprocess the user-input text to

align with the preprocessing applied during training.

8. Language Prediction:

Utilize Model: Apply the trained Naive Bayes model

to predict the language of the user-input text.

9. Display Results:

Render Results: Display the detected language and

any relevant information on the results page.

10. Deployment:

Deploy on Server: Deploy the Flask application on a

web server or cloud platform, ensuring that the Naive

Bayes model is loaded and ready.

11. Testing and Optimization:

Thorough Testing: Test the system with various inputs

to ensure its accuracy and reliability.

Optimization: Fine-tune the model or Flask app for

improved performance if necessary.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 6

BUILDING A MODEL:

1.Selecting the Algorithm:

Choose Naive Bayes: Naive Bayes is a probabilistic

algorithm often used for text classification tasks. For

language detection, the Multinomial Naive Bayes

variant is commonly employed.

2. Dataset Preparation:

Data Collection: Gather a diverse dataset containing

text samples in different languages.

Data Cleaning: Preprocess the dataset by removing

irrelevant characters, symbols, and special characters.

Labeling: Ensure each text sample is labeled with its

corresponding language.

3. Train-Test Split:

Divide the Dataset: Split the dataset into training and

testing sets. This ensures you can evaluate the model's

performance on unseen data.

4. Feature Extraction:

Text Vectorization: Use techniques like TF-IDF (Term

Frequency-Inverse Document Frequency) to convert

the text data into numerical features.

Tokenization: Break the text into individual words or

tokens.

5. Model Training:

Initialize the Model: Create an instance of the chosen

Naive Bayes algorithm, such as MultinomialNB from

scikit-learn.

Training: Train the model using the training dataset.

The model learns the language patterns from the

labeled text samples.

6. Model Evaluation:

Testing: Evaluate the model's performance on the

testing set to ensure it generalizes well to unseen data.

Metrics: Use classification metrics such as accuracy,

precision, recall, and F1-score to assess the model's

effectiveness.

7. Hyperparameter Tuning (Optional):

Fine-Tuning: Adjust hyperparameters if necessary to

optimize the model's performance. However, Naive

Bayes models often have few hyperparameters to tune.

8. Save the Model:

Persistence: Save the trained model to disk for later use

in the Flask application. This can be achieved using

libraries like joblib or pickle in Python.

After completing these steps, you'll have a trained

Naive Bayes model capable of predicting the language

of a given text. This model can then be integrated into

the Flask. web application language detection on

webpages.

FLOW CHART:

DATASET DESCRIPTION:

It's a language detection dataset. This dataset

consists of text details for 17 different languages,

i.e, you will be able to create an ML model for

predicting 17 different language.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 7

RESULTS:

CONCLUSION: In conclusion, the integration of

the Naive Bayes algorithm and Flask web framework

for web page language detection represents a powerful

and practical solution for addressing the challenges of

multilingual web content. This system harnesses the

strengths of machine learning and real-time web

services to enhance user experience and content

relevance in a globalized digital landscape. The

methodology outlined here, from data collection and

preprocessing to model training and deployment with

Flask, offers an efficient and accessible approach for

language detection. The Naive Bayes algorithm, by

assuming independence between words and making

efficient probability calculations, allows for accurate

and real-time language identification, even in scenarios

with limited text data or the presence of multiple

languages within a document. Additionally, Flask's

integration streamlines the process, offering a user-

friendly interface and scalability for practical

deployment.

REFERENCES:

1. Russell, S. J., & Norvig, P. (2021). Artificial

Intelligence: A Modern Approach. Pearson.

2. Murphy, K. P. (2012). Machine Learning: A

Probabilistic Perspective. MIT Press.

3. Sutton, R. S., & Barto, A. G. (2018). Reinforcement

Learning: An Introduction. MIT Press.

4. Bengio, Y., Goodfellow, I. J., & Courville, A. (2016).

Deep Learning. MIT Press.

 5. Chollet, F. (2017). Deep Learning with Python.

Manning Publications.

 6. Colah, C. (2015). Understanding LSTM Networks.

[Blog post] https://colah.github.io/posts/2015-08-

Understanding-LSTMs/

7. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent

Dirichlet Allocation. Journal of Machine Learning

Research, 3, 993-1022.

 8. Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,

Bethard, S. J., & McClosky, D. (2014). The Stanford

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27407 | Page 8

CoreNLP Natural Language Processing Toolkit. In

ACL (System Demonstrations) (pp. 55-60).

 9. Bird, S., Klein, E., & Loper, E. (2009). Natural

Language Processing with Python. O'Reilly Media.

10. Grimes, S. M. (2013). Flask Web Development:

Developing Web Applications with Python. O'Reilly

Media.

11. Grinberg, M. (2018). Flask Mega-Tutorial Part I:

Hello, World! [Blog post]

https://blog.miguelgrinberg.com/post/the-flask-mega-

tutorial-part-i-hello-world

12. Finkel, J. R., Grenager, T., & Manning, C. (2005).

Incorporating Non-local Information into Information

Extraction Systems by Gibbs Sampling. In ACL (pp.

363-370).

13. Bird, S., Dale, R., & Elman, J. L. (2005).

Introduction to NLP: What, How and Why. In Bird, S.,

Dale, R., & Elman, J. L. (Eds.), Handbook of Natural

Language Processing (pp. 1- 8). CRC Press.

 14. Mikolov, T., Chen, K., Corrado, G., & Dean, J.

(2013). Efficient Estimation of Word Representations

in Vector Space. arXiv preprint arXiv:1301.3781.

15. Géron, A. (2017). Hands-On Machine Learning

with Scikit-Learn and TensorFlow. O'Reilly Media

http://www.ijsrem.com/
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world

