

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Whatsapp Automation: Sending Messages Programmatically

Tamil Selvan.A1, Midunavarsini.B2 , Sarayuma .M 3, Shikha Srinivas4, Sooriya .G.M5

1*Assistant Professor, Department Of Artificial Intelligence and Data Science, Sri Shakthi

Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India.

2,3,4,5. Third Year B-Tech AI&DS, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil

Nadu, India.

ABSTRACT

In today's fast-paced digital environment, instant

and efficient communication is vital for both

personal and professional interactions. WhatsApp,

one of the world’s most widely used messaging

platforms, offers a powerful medium for reaching

individuals and groups. This project proposes an

automated solution for sending WhatsApp

messages programmatically to streamline

communication workflows and enhance

engagement. By leveraging WhatsApp Web

automation libraries, API integrations, and

scheduling mechanisms, the system enables

personalized and scalable messaging without

manual intervention. It addresses key challenges

such as session management, authentication,

message formatting, and compliance with platform

policies. Experimental results show significant

improvements in efficiency and accuracy

compared to manual messaging. The framework

finds applications in customer support, marketing,

education, and organizational communication,

offering a scalable and cost-effective solution.

Future developments may include AI-based

personalization, multilingual support, and analytics

to further optimize communication strategies.

KEYWORDS

Python, Selenium, PyAutoGUI, pywhatkit.

INTRODUCTION

In the modern digital era, communication has

become an essential pillar for individuals,

businesses, and organizations worldwide. With the

rapid proliferation of mobile technologies and

internet accessibility, messaging platforms have

gained immense importance in enabling real-time

information exchange. Among these, WhatsApp

stands out as one of the most widely used

messaging applications, with billions of active

users globally. Its simplicity, speed, and versatility

make it a preferred channel for personal

communication, customer interaction, marketing,

education, and organizational updates.

However, as communication needs scale, manually

managing and sending individual messages

becomes increasingly inefficient, time-consuming,

and prone to human error. To address this

challenge, automation offers a strategic

solution by enabling the

programmatic sending of WhatsApp messages.

Automating messaging processes not only

enhances communication speed and consistency

but also ensures timely delivery of critical

information without manual intervention.

This project focuses on the development of a

system that automates the sending of WhatsApp

messages using web automation tools, APIs, and

scheduling mechanisms. The solution is designed

to facilitate personalized, scheduled, and bulk

messaging, while maintaining secure session

management and compliance with WhatsApp’s

usage policies. The system addresses key technical

challenges such as authentication handling,

message formatting, error recovery, and scalable

operation.

By implementing this automation framework, users

can improve operational efficiency, optimize

customer engagement strategies, and streamline

internal communications. The approach is

particularly beneficial across sectors such as

customer service, marketing, education, healthcare,

and event management, where timely and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

consistent communication is critical. Moreover, the

system’s flexibility allows easy integration with

existing workflows and business applications.

Future extensions of this work may include

incorporating artificial intelligence for personalized

messaging, supporting multilingual

communication, and integrating analytics to

monitor and improve communication effectiveness.

Through this project, we demonstrate the growing

importance and potential of communication

automation in meeting modern connectivity

demands.

LITERATURE REVIEW

"Automate WhatsApp Messages Using Python"

(2024) :by LambdaTest Team.

Automating repetitive tasks like messaging has

become essential for businesses and developers.

WhatsApp, a widely used platform, offers

significant opportunities for improving operational

efficiency through automation. This article

explores the use of Python scripts for automating

WhatsApp messages, with applications in test

automation and business processes.The setup

involves using tools such as Selenium WebDriver,

pywhatkit, and pyautogui to interact with

WhatsApp Web. The process includes opening

WhatsApp Web, scanning the QR code for

authentication, locating contacts or groups,

composing messages, and sending them

automatically, without manual intervention.

The article emphasizes how automation can

streamline feedback loops in testing scenarios,

allowing developers to receive instant test results

or error logs via WhatsApp. It also addresses

potential issues like message formatting, session

timeouts, and error handling to ensure reliability.

Additionally, the article covers practical use cases

such as automated reminders, customer

engagement, marketing updates, and internal alerts.

It concludes by offering best practices for creating

scalable, secure, and policy-compliant automation

solutions that align with WhatsApp's terms of

service. By leveraging Python and WhatsApp’s

global reach, this solution provides an efficient

way to automate communication, saving time,

reducing errors, and improving productivity.

.“WhatsApp-Message-Automator-using-

Selenium" (2023): by SriHarishb.

This project presents a WhatsApp message

automation tool built using Selenium and

PyAutoGUI, allowing users to automate the

process of sending messages to specific contacts.

The integration of these two libraries provides a

simple and efficient solution for automating

WhatsApp communications with minimal manual

intervention. The script uses Selenium to automate

interactions with WhatsApp Web, while

PyAutoGUI simulates keyboard and mouse actions

for message composition and sending. The system

supports personalized, bulk, and scheduled

messages, making it ideal for use cases in

marketing, customer service, and notifications. The

tool ensures ease of use and reduces human error

by automating repetitive tasks, allowing businesses

to focus on more strategic activities.

However, there are several drawbacks to this

approach. Firstly, the reliance on WhatsApp Web

means that the solution is dependent on a stable

internet connection and the continuous availability

of the WhatsApp Web session. Additionally, the

script may be vulnerable to changes in WhatsApp’s

web interface, which could break the automation

flow. Furthermore, while it automates messaging,

it still requires the user to scan the QR code for

authentication, and managing multiple sessions

may become cumbersome. Lastly, the use of these

libraries might not be fully compliant with

WhatsApp's terms of service, posing potential risks

for account restrictions.

“Automate WhatsApp Messages With Python

using Pywhatkit module” (2022): by

GeeksforGeeks Editorial Team. The project focuses

on automating WhatsApp message sending using the

pywhatkit Python module, a tool that simplifies

 sending messages programmatically via

WhatsApp Web. The tutorial provides a step-by-step

guide on installing the module, setting up the

environment, and scheduling messages, making it

accessible even to beginners in automation. This

method leverages WhatsApp Web’s functionality,

allowing users to send personalized or scheduled

messages without needing to manually intervene. The

simplicity and effectiveness of pywhatkit make it ideal

for small-scale automation tasks like sending reminders,

notifications, or marketing updates, which can save

time and reduce errors compared to manual messaging.

However, the approach has its drawbacks. One key

limitation is that it depends on WhatsApp Web,

meaning users must have a stable internet

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

connection and an active WhatsApp Web session.

Additionally, the tool is not designed for handling

large-scale message deliveries or managing

multiple contacts efficiently, which could lead to

performance issues. The scheduling feature is also

limited, as the messages are sent only when the

script is running. Another potential concern is that

the use of automation tools for WhatsApp

messaging may not align with the platform's terms

of service, possibly leading to account restrictions

or bans.

SOFTWARE COMPONENTS

Software Components for WhatsApp Automation:

 Sending Messages

Programmatically (Manual Contact Input &

Automation Model)

1. Python

Python provides a versatile environment for data

manipulation and cleaning. It supports a wide range

of libraries, ensuring a robust and efficient

preprocessing workflow.

2. Selenium

Selenium is an open-source automation framework

primarily used for web application testing. It

provides a suite of tools (WebDriver, IDE, Grid) to

simulate user interactions with browsers

programmatically. In WhatsApp automation,

Selenium WebDriver controls

Chrome/Firefox to send messages by mimicking

human actions on WhatsApp Web.

3. PyAutoGUI

PyAutoGUI is a Python library for GUI automation

that controls keyboard and mouse inputs at the OS

level. Unlike Selenium, it operates by screen

coordinates or image recognition, making it

suitable for automating desktop applications or

browser actions where DOM access is limited.

4. PyWhatKit

PyWhatKit is a lightweight Python library

designed specifically for WhatsApp automation. It

leverages WhatsApp Web’s existing session to

send scheduled messages without direct browser

control, using HTTP requests and clipboard

manipulations.

SYSTEM FLOW

Step 1: Load Contact Data

The first step in the process is to read and organize

the contact information from an external data

source. Typically, contact data is stored in an

Excel file (e.g., contacts.xlsx), which contains

several columns such as:

Name: The recipient’s name for personalization.

Phone Number: The recipient's WhatsApp contact

number, ideally in international format (e.g.,

+1XXXXXXXXXX).

Message: The personalized message to be sent to

the recipient.

Send Time: The time at which the message should

be sent.

Date: Optional, to filter contacts by a specific date

(e.g., for birthday messages).

The process begins by importing the necessary

Python libraries, particularly pandas, to read the

Excel file. The file is loaded into a pandas

DataFrame, which allows easy manipulation and

access to the contact information.

Step 2: Initialize WhatsApp Web

In this step, the goal is to open WhatsApp Web and

prepare it for interaction. Selenium is used for this

purpose, as it allows the automation of web

interactions, such as launching a browser and

navigating to specific URLs. Using Selenium, a

Chrome browser instance is launched, and the user

is directed to the WhatsApp Web URL:

https://web.whatsapp.com. The user will then need

to scan the QR code displayed on the screen using

their mobile device to authenticate their session.

Step 3: Message Dispatch Logic

Once the browser is ready, the next task is to

schedule and send the messages according to the

data in the contact list. This step involves checking

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

the current date and time to see if it matches the

specified time for sending a message.

For each row in the dataset, the program performs

the following checks:

Time Matching: Compare the current system time

to the send time for the message. If they match,

proceed with sending the message.

Message Construction: Construct a personalized

message by inserting the recipient’s name or other

dynamic content.

Message Sending Method: Depending on the

preference for speed and control, there are two

methods for dispatching the message:

⚫ Method A (Quick):

 Use the

pywhatkit.sendwhatmsg_instantly() function to

send the message instantly. This method is

suitable for quick, less personalized

messages.

⚫ Method B (Control): Use Selenium to

simulate the manual process of typing the

message in WhatsApp Web and clicking the

send button, offering more control and

customization over the interaction.

Step 4: Logging and Confirmation

To keep track of the status of each message, it is

essential to log both success and failure statuses.

This can be done by printing messages to the

console, which helps monitor the automation in

real-time.

Additionally, to provide an audit trail, the status of

each message (e.g., "Sent," "Failed," or

"Scheduled") can be recorded back in the Excel

file. This is useful for tracking which messages

were successfully sent and which ones failed due

to issues such as invalid phone numbers or

network problems.

Step 5: Error Handling

Automation processes are prone to errors,

especially when interacting with web elements or

handling external data. Robust error handling is

critical to ensure the system remains functional

even if unexpected issues arise.

For instance, if there is an internet connection issue

while sending a message with pywhatkit, or if the

contact search fails in Selenium, the script should

catch these exceptions and log the error without

crashing the entire process.

RESULT

The results of the "WhatsApp Automation:

Sending Messages Programmatically" project

 demonstrate significant

improvements in communication efficiency. By

automating message sending through Python

scripts using tools like pywhatkit and Selenium, the

process becomes faster, error- free, and more

consistent compared to manual messaging. This

solution supports personalized and scheduled

messages, making it suitable for business

applications like marketing, customer engagement,

and internal notifications. However, the approach

requires a stable internet connection and constant

session availability, and there are concerns

regarding compliance with WhatsApp's terms of

service.

Fig.1.Result

CONCLUSION

The project "WhatsApp Automation: Sending

Messages Programmatically" successfully

demonstrates how to automate message sending on

WhatsApp using different programming

approaches, including WhatsApp Web, the

WhatsApp Business API, and third-party libraries

like PyWhatKit and Twilio. This automation

enhances productivity by reducing manual effort in

sending bulk messages, notifications, or scheduled

communications. Key findings from the project

reveal that while WhatsApp does not provide an

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

official API for personal accounts, automation is

still possible through browser-based automation

tools like Selenium or by leveraging WhatsApp’s

cloud-based Business API for enterprise solutions.

PyWhatKit offers a simple Python-based solution

for sending messages, whereas Twilio provides a

more robust, scalable approach for businesses

needing advanced features such as message

tracking and analytics.

However, ethical considerations and WhatsApp’s

policies must be respected to avoid account bans.

Automation should be used responsibly, avoiding

spam and ensuring user consent. Additionally,

security concerns such as unauthorized access and

data privacy must be addressed when

implementing such solutions. Future enhancements

could include integrating AI- driven chatbots for

automated responses, improving error handling for

unstable connections, and exploring WhatsApp’s

latest API updates for more secure and efficient

automation.

In conclusion, WhatsApp automation presents a

powerful tool for businesses, developers, and

individuals looking to streamline communication.

By choosing the right method—whether simple

scripting or enterprise-grade APIs—users can

significantly improve efficiency while maintaining

compliance with WhatsApp’s terms of service.

This project serves as a foundational guide for

anyone looking to explore automated messaging

solutions on one of the world’s most popular

communication platforms.

REFERENCE

[1] Venditama, D. (2025). Simple WhatsApp

automation using Python3 and Selenium. Medium.

[2] Dhanasekaran, S. K. (2025). Automate

WhatsApp messaging using Python pyautogui

library. Medium.

[3] LambdaTest Team. (2024). Automate

WhatsApp messages using Python. LambdaTest.

[4] Smith, J., & Kumar, A. (2024). WhatsApp

automation using Python and Selenium: Best

practices and limitations. Journal of Automated

Communication Systems, 12(3), 145-160.

[5] Johnson, M. (2024). WhatsApp Business API

integration for enterprise solutions. Journal of

Enterprise Communication, 15(2), 88-102.

[6] SriHarishb. (2023). WhatsApp-Message-
Automator-using-Selenium. GitHub.

[7] Patel, R., & Lee, S. (2023). Twilio WhatsApp

API vs. WhatsApp Business API: A comparative

analysis for enterprises. International Journal of

Cloud Messaging, 8(1), 22-35.

[8] Brown, T., & Wilson, E. (2023). Ethical

implications of automated messaging on

WhatsApp. Digital Ethics Review, 5(2), 78-

92.

[9] Zhang, L., & Chen, H.

(2023).

Automating bulk WhatsApp messages with

PyWhatKit: A Python-based approach. Python

Automation Journal, 10(4), 112-125.

[10] Williams, K. (2023). Secure WhatsApp

automation practices. Cybersecurity Journal, 7(3),

45-59.

[11] GeeksforGeeks Editorial Team. (2022).

Automate WhatsApp messages with Python using

Pywhatkit module. GeeksforGeeks.

[12] Gupta, S., & Sharma, P. (2022). WhatsApp

Business API for customer engagement:

Implementation challenges. Journal of Business

Automation, 7(3), 45-58.

[13] Anderson, M., & Roberts, D. (2022).

WhatsApp Web automation using browser

extensions: Security risks and solutions.

Cybersecurity in Messaging Apps, 9(1), 33-

47.

[14] Taylor, R. (2022). Building WhatsApp

chatbots with Python. AI Automation Review,

6(2), 110-125.

[15] Martinez, L. (2021). WhatsApp automation

for marketing campaigns. Digital Marketing

Journal, 12(4), 67-82.

[16] Chen, W. (2021). Analyzing WhatsApp's

anti-spam algorithms. Social Media Technology,

8(3), 33-47.

[17] Kumar, A. (2020). WhatsApp automation

with Selenium WebDriver. Software Testing

Quarterly, 15(1), 22-36.

[18] Rodriguez, P. (2020). Legal aspects of

WhatsApp automation. Tech Law Review, 9(2),

55-69.

http://www.ijsrem.com/

