
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31940 | Page 1

WORD WISE PREDICTION USING DEEP LEARNING

Kakumanu Lakshmi Sireesha1, Jetti Aakanksha2, Kothapalli Nikita3,

Mummadi Sesha Sai4, S. Anil Kumar5

1,2,3,4 Student, Department of Computer Science and Engineering, Tirumala Engineering College
5 Professor, Department of Computer Science and Engineering, Tirumala Engineering College

---***---

Abstract - Word wise prediction is an input technology

that simplifies the process of typing by suggesting the next word

for a user to select, as typing in a conversation consumes time.

You might be using it daily when you write texts or emails

without realizing it.

Most of the keyboards in smart phones suggest next word

prediction features. Google also uses next word prediction based

on our browsing history. So, preloaded data is also stored in the

keyboard function of our smart phones to predict the next word

correctly.

By predicting the next word in a sequence, the number of

keystrokes of the user can be reduced. In this project, we have

used a deep learning approach by using Long Short Term

Memory(LSTM) technique which gives better prediction

accuracy than the machine learning approach.

Key Words: Word, technology, smart phones, keystrokes,

long short term memory.

1. INTRODUCTION

Word prediction tools were developed which can help to

communicate and also to help the people with less typing speed.

The research on word prediction has been performing well.

Word prediction technique does the task of guessing the

preceding word that is likely to continue with few initial text

fragments. Existing systems work on a word prediction model,

which suggests the next immediate word based on the current

available word. These systems work using machine learning

algorithms which have limitations to create accurate sentence

structure. Developing technologies have been producing more

accurate outcomes than the existing system technologies,

models developed using deep learning concepts are capable of

handling more data efficiently.

This is similar to how a predictive text keyboard works on apps

like What's App, Facebook Messenger, Instagram, e-mails, or

even Google searches. It will consider the last word of a

particular sentence and predict the next possible word. You

might be using it daily when you write texts or emails without

realizing it. Most of the keyboards in smartphones give next

word prediction features; google also uses next word prediction

based on our browsing history. So, preloaded data is also stored

in the keyboard function of our smartphones to predict the next

word correctly. By predicting the next word in a sequence, the

number of keystrokes of the user can be reduced. Three deep

learning techniques namely Long Short Term Memory (LSTM),

Bi-LSTM and BERT have been explored for the task of

predicting the next word. In this project we have used the

LSTM technique for predicting the next word.

2. LITERATURE REVIEW

• S. Lai, et. al. [1] have proposed the context based

information classification; RCNN is very useful. The

performance is best in several datasets, particularly on

document-level datasets. Depending on the words used

in the sentences, weights are assigned to it and are

pooled into minimum, average and the max pools. Here,

max pooling is applied to extract the keywords from the

sentences which are most important. RNN, CNN and

RCNN when compared with other traditional methods

such as LDA, Tree Kernel and logistic regression

generate highly accurate results.

• Hassan, et. al. [9] have proposed RNN for the structure

sentence representation. This tree like structure captures

the semantics of the sentences. The text is analyzed

word by word by using RNN then the semantics of all

the previous texts are preserved in a fixed size hidden

layer. For the proposed system LSTM plays an

important role, being a memory storage, it holds the

characters which helps in predicting the next word.

• J. Y. Lee, et. al. [7] have proposed that text

classification is an important task in natural language

processing. Many approaches have been developed for

classification such as SVM (Support Vector Machine),

Naive Bayes and so on. Usually short text appears in

sequence (sentences in the document) hence using

information from preceding text may improve the

classification.

• Z. Shi, et. al. [4] have defined that recurrent neural

network have input, output and hidden layers. The

current hidden layer is calculated by the current input

layer and previous hidden layer. LSTM is a special

Recurrent Neural Network. The repeating module of

ordinary RNN has a simple structure; instead, LSTM

uses a more complex function to replace it for more

accurate results. The key element in the LSTM is the

cell state which is also called the hidden layer state.

• J. Shin, et. al. [10] have defined that understanding the

contextual aspects of a sentence is very important and

reveals significant contributions in the field of natural

language processing (NLP) and deep learning. Their

work likely explores advancements.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31940 | Page 2

3. METHODILOGY

3.1 EXISTING SYSTEM

An n-gram model is a type of probabilistic language model for

predicting the next item in such a sequence in the form of a (n

— l)— order Markov model. The N-gram model predicts the

occurrence of a word based on the occurrence of its N — 1

previous words.

You can think of an N-gram as the sequence of N words, by

that notion, a 2-gram (or bigram) is a two-word sequence of

words like "please turn", "turn your", or" your homework", and

a 3-gram (or trigram) is a three-word sequence of words like

"please turn your", or 'turn your homework’.

Disadvantages

• Markov chains don't have memory as we are

suggesting the next word based on frequency.

• Sparsity problem occurs with increasing values of n.

• Storage problems occurs due to large number of n-

grams from large vocabulary size.

• N-grams only consider a fixed number of preceding

words (N) to predict the next word.

.3.2 PROPOSED SYSTEM

 RNNs suffer from the vanishing gradient problem which

makes it difficult to learn and tune the parameters in the earlier

layers. In the proposed system, long short-term memory

(LSTM) networks were later introduced to overcome this

limitation.

An LSTM, Long Short-Term Memory, model was first

introduced in the late 90s by Hoch Reiter and Schmid Huber.

Since then, many advancements have been made using LSTM

models and its applications are seen from areas including time

series analysis to connected handwriting recognition. An

LSTM network is a type of RNN which learns dependence on

historic data for a sequence prediction task. What allows

LSTMs to learn these historic dependencies are its feedback

connections. For a common LSTM cell, we usually see an input

gate, an output gate, and a forget gate. The weights of these

gates control the flow of information in an LSTM model and

thus are the parameters learnt during the training process.

Phases of Proposed Method

 A corpus is a collection of authentic text or audio organized

into datasets. In natural Language processing, a corpus contains

text and speech data that can be used to train Aland machine

learning systems.

Block diagram of Next Word Predictor Using LSTM

PROPOSED ALGORITHM

Algorithm: Next word Prediction Using LSTM

 Input: Text Corpus data.

For 1 to P // LSTM classifiers

For 1 to N // suggesting unigram or Bigram or

Trigram

1.Generating the Subset n

2.Generate N-grams instances from the whole

training set.

3.Randomly choose n.

4.Training the individual

5.LSTM classifier Train up to pth classifier.

6.Making a prediction For the given Input

7.Predict the outcome with Next word End

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31940 | Page 3

8.Predict the Next word Based on N-gram.

SYSTEM FRAMEWORK

DATA PROCESSING

Exploratory analysis

 The input files had garbage text such as repeated

letter words (e.g., "aaaa", "qqqqqqqq"). The single-word,

Document Term Matrix (DTM)showed a high number of

sparse terms. Although the texts are mostly in English, they

contain words from other languages.

Understanding word frequencies

 It was not possible to produce a DTM for each n-

gram because it kept reporting errors. For this reason,

discovering bigram and trigram frequencies was also not

possible. After some research, as well as trial and error

attempts that were consuming too much time, the strategy

was changed to create each n-gram with repetitions removed,

and creating a term frequency vector for all individual words.

Basic N- gram model Patterns

• FILTER PATTERN_OI: characters not matching "a"

through "z" (lower and uppercase), digits ranging from

0 to 9, the blank space, and the single quote character

(').

• FILTER PATTERN_02: text pattern starting with a

single quote, followed by any number of letters ranging

from "a" through "z" (lower and uppercase), and then

followed by a blank space.

• FILTER PATTERN 03: text pattern matching truncated

forms of the verbs 'to do", "to be", and "to have".

• FILTER PATTERN 04: "stand-alone" numbers, such as

2000.

• SINGLE_CHARACTER PATTERN: terms composed

of one character, excluding a , i and I”.

PROCESS

 Words are converted to lowercase. Although capitalized

proper names will be lost, there are many more portions of the

texts that contain unnecessary capitalized words.

All characters not forming part of Fiter_Pattern_1 are

removed. The blank space is included in the pattern just so that

it is ignored. The single quote, usually located in between words

(e.g., "don't" and "they've") is left in the texts. This way, these

words can be processed later, that is, once the rest of the non-

pattern characters have been removed.

4. IMPLEMANTATION

Keras

 Keras is a powerful and ease-to-use free open source

Python library for developing and evaluating deep learning

models. It wraps the efficient numerical computation libraries

Theano and TensorFlow and allows you to define and train

neural network models in just a few lines of code.

 Keras was created to be user friendly, modular, easy to

extend, and to work with Python. The API was "designed for

human beings, not machines," and "follows best practices for

reducing cognitive load."

Neural layers, cost functions, optimizers, initialization

schemes, activation functions, and regularization schemes are

all standalone modules that you can combine to create new

models. New modules are simple to add, as new classes and

functions. Models are defined in Python code, not separate

model configuration files.

Google Colab

 If you have used Jupyter notebook previously, you would

quickly learn to use Google Colab. To be precise, Colab is a

free Jupyter notebook environment that runs entirely in the

cloud. Most importantly, it does not require a setup and the

notebooks that you create can be simultaneously edited by your

team members - just the way you edit documents in Google

Docs. Colab supports many popular machine learning libraries

which can be easily loaded in your notebook.

Python

 Python is a high level general purpose programming

language. Its design philosophy emphasizes code readability

with the use of significant indentation. It contains various

libraries which are useful to implement the logic like NumPy,

Keras, OpenCV, etc.. It provides easy compilation and provides

efficient output.

TensorFlow

 TensorFlow stands as a leading open-source machine

learning library, developed by Google Brain. It boasts a robust

ecosystem tailored to streamline the development and

deployment of machine learning models, with a particular

focus on neural networks. TensorFlow's strength lies in its

flexible architecture, which supports diverse hardware

platforms such as CPUs, GPUs, and TPUs (Tensor Processing

Units), making it adaptable to a wide array of computational

environments, from desktops to large-scale distributed systems.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31940 | Page 4

5. RESULTS

the

6. TESTING

Software testing is a process used to help identify the

correctness, completeness and quality of developed computer

software. Software testing is the process used to measure the

quality of developed software. Testing is the process of

executing a program with the intent of finding errors. Software

testing is often referred to as verification & validation.

STLC (Software Testing Life Cycle):

Testing itself has many phases i.e., is called as STLC. STLC is

part of SDLC

• Test Plan

• Test Development

• Test Execution

• Analyze Result

• Defect Tracking

TYPES OF TESTING

1. White Box Testing

2. Black Box Testing

3. Grey Box Testing

WHITE BOX TESTING

White box testing as the name suggests gives

the internal view of the software. This type of

testing is also known as structural testing or glass

box testing as well, as the interest lies in what lies

inside the box.

BLACK BOX TESTING

 It is also called as behavioral testing. It

focuses on the functional requirements of the

software. Testing either functional or

nonfunctional without reference to the internal

structure of the component or system is called black

box testing

GREY BOX TESTING

 Grey Box testing is a software testing method

to test the software application with partial

knowledge of the internal working structure. It is a

combination of black box and white box testing

because it involves access to internal coding to

design test cases as white box testing and testing

practices are done at functionality level as black

box testing.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31940 | Page 5

7. CONCLUSION

Word wise prediction powered by deep learning stands as a

transformative technology, offering remarkable accuracy and

fluency in anticipating the next word in a sequence of text.

Through sophisticated algorithms and extensive training on

vast datasets, deep learning models capture complex patterns

and dependencies in language, enhancing user experience and

productivity across various domains.

 Furthermore, the continuous evolution of deep learning

techniques and the availability of large-scale datasets have

contributed to the ongoing improvement of next word

prediction systems. Techniques such as transfer learning, fine-

tuning, and ensemble methods enable models to leverage

knowledge from pre-trained models and adapt to specific tasks

or domains with minimal data requirements.

Additionally, the integration of attention mechanisms and

contextual embeddings further enhances the models' ability to

understand and generate contextually relevant predictions,

leading to more precise and contextually coherent outcomes.

 As deep learning continues to advance and researchers

explore novel approaches to modeling language, the future

holds great promise for further improvements in word wise

prediction systems, ultimately shaping the way we interact

with and leverage textual information in various applications

and domains.

8. REFERENCES

1. R. Kneser and H. Ney, "Improved backing-off for n-

gram language modeling", International Conference on

Acoustics Speech and Signal Processing, pp. 181-184,

1995.

2. S.F. Chen and J.T. Goodman, "An empirical study of

smoothing techniques for language modeling",

Computer Speech and Language, vol. 13, no. 4, pp.

359-393, 1999.

3. J. Goodman, "A bit of progress in language modeling",

Microsoft Research, 2001.

4. Yoshua Bengio, Rejean Ducharme, Pascal Vincent and

Christian Jauvin, "A neural probabilistic language

model", Journal of Machine Learning Research, vol.

5. J. Allen, Natural Language Understanding,

Benjamin/Cummings Publishing, 1995.

6. Fu-Lian Yin, Xing-Yi Pan, Xiao-Wei Liu and Hui-Xin

Liu, Deep neural network language model research and

application overview, 2015.

7. Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu

and Charles Sutton, A survey of machine learning for

big code and naturalness, 2017.

8. Mohd. Majid and Piyush Kumar, Language Modelling:

Next word Prediction, 2019.

9. "The list of books "Beyond Good and Evil by Friedrich

Wilhelm Nietzsche" from the official Library" in The

Project Gutenberg.

10. The list of Free eBooks - Project Gutenberg books"

from the official Library' The Project Gutenberg.

http://www.ijsrem.com/

