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Abstract Accurate air quality forecasting is vital for public
health and urban policy-making. Conventional statistical
approaches, including ARIMA fail to capture nonlinear
patterns but algorithms like Random Forest and XGBoost,
despite their strengths, fail to represent long-term sequential
relationships in data.. Deep learning approaches, including
LSTM and CNN hybrids, improve accuracy but are limited
by poor interpretability. This work proposes a hybrid DCNN-
LSTM framework integrated with SHAP for explainability.
Experiments on Delhi air quality data demonstrate that the
model achieves superior accuracy (R*=1.000, RMSE = 5.74)
while identifying PM2.5, NO:, and SO: as key pollutants,
thereby ensuring both predictive performance and
transparency.

Keywords—Air Quality Forecasting, Deep Learning,
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I. INTRODUCTION

Air pollution has emerged as one of the most pressing
challenges in modern urban environments. Hazardous
accumulations of particulate matter (PM2.5, PM10) and gases
(NO2, SOz, Os) are common in cities like Delhi, resulting in
adverse health impacts including respiratory issues,
cardiovascular risks, and reduced longevity., and economic
losses. Accurate air quality forecasting is essential for issuing
health warnings, designing urban policies, and mitigating
adverse impacts linear regression has been widely used but are
restricted by assumptions of linearity and stationarity. These

methods are often unable to represent the complex nonlinear
behaviors and long-range time dependencies found in environmental
datasets. Deep learning approaches such as LSTM and CNN offer
superior performance by modelling temporal and spatial
dependencies but lack interpretability, making them difficult to
trust in sensitive policy domains.

This work addresses these challenges by integrating Explain
able AI(XAI)techniques, specifically SHAP, with a hybrid
DCNN-LSTM model. The aim is to achieve high predictive
accuracy while providing transparency about pollutant
contributions, linking advanced technical capabilities with
practical implementation in real-world contexts.

II. LITERATURE REVIEW

A. Traditional Approaches

Traditional approaches like ARIMA and regression are
primarily suited for linear relationships and short-term
forecasting tasks [1]. However, they fail to generalize in
multivariate, nonlinear contexts. Algorithms like Support vector
regression [2] and Random forests [3] provide improved
flexibility and robustness but lack the ability to model long-range
temporal patterns.

B. Deep Learning Models
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Neural networks have advanced the state of air quality
forecasting. LSTM/Bi- One of the key strengths of LSTM
networks lies in their ability to model dependencies that span over
long time intervals in time-series data. [5]. GRU provides a
lightweight alternative to LSTM with reduced computational cost
[6]. Hybrid CNN-LSTM architectures leverage CNNs for spatial
representation and LSTMs for capturing sequential dependencies
in time-series data. [7]. Studies show that these architectures
significantly outperform traditional methods, particularly in
multivariate datasets with strong spatiotemporal dynamics [8].

C. Hybrid Models

Hybrid approaches, such as ARIMA- LSTM and DCNN-
LSTM, combine statistical rigor with deep learning flexibility
[10].
complementary strengths. For instance, ARIMA handles linear

These models enhance robustness by leveraging

trends while neural networks capture nonlinear patterns [11].

D. Explainable Al in Forecasting

Despite high predictive accuracy, deep learning models face
criticism for their "black box" nature. To address the black-box
nature of deep models, XAl methods including LIME and SHAP
[9] are employed. SHAP, grounded in cooperative game theory,
provides reliable feature importance values, allowing clear
insights into how pollutants affect AQI predictions. [12].

I11. SYSTEM ARCHITECTURE

a. Architecture Overview

The system architecture follows a modular workflow that
connects data entry to preparatory operations, modeling
functions, and final visualization outputs. The system integrates
several deep learning models with traditional models through an
organized backend system that stores data. The modular
organization supports both scalability and explainable Al
capabilities by allowing model-specific requests with cases such
as DCNN-LSTM and SHAP-based outputs.
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Fig 3.1: Architecture Diagram for Sprint 1

b. Enhanced XAI-Powered Architecture

The enhanced XAlI-Powered Air Quality Forecasting system
with DCNN- LSTM provides seamless deployment capabilities
combined with SHAP interpretability and project monitoring
features. This structured modular framework enables developers,
analysts, and coordinators to maintain efficient performance in
their work areas. After training, the DCNN-LSTM model
receives deployment preparation for use through backend servers
and application programming interfaces.

c. System Components and Workflow

The deployed model enables both delayed and time-sensitive
predictions of AQI. Model interpretability is achieved through
SHAP, enabling analyst visualization of which pollutants modify
The Python-based Jupyter Notebooks
implementation supports future deployment as web dashboards

prediction results.

while maintaining individual function boundaries including data
handling, model inference, interpretability, and project status
tracking.

The workflow comprises: (1) Historical AQI data ingestion
and preprocessing; (2) Model deployment to Flask; (3) User input
reception through notebook/web U,

(4) Model prediction generation; (5) SHAP explanation of
predictions; (6) Visual output display; and (7) Sprint tracking
maintenance via external tools.
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I. METHODOLOGY
a. Data Gathering and Preparation

Air quality data for Delhi was collected from publicly
available repositories, including pollutants (PM2.5, PM10, NO-,
SO., CO, Os) and meteorological variables. Preprocessing
involved handling missing values and outliers, normalization of
numerical features, and encoding temporal variables (season,
month).

b. Exploratory Data Analysis

EDA revealed seasonal and monthly trends. PM2.5 and PM10
stubble
and temperature inversion. Os concentrations were higher in

peaked during winter due to burning
summer due to photochemical activity. Correlation heatmaps
confirmed strong relationships between pollutants.

¢. Model Development

This research uses algorithms such as Linear Regression,
SVR, RF, and XGBoost [4], while the deep learning category
included LSTM, Bi-LSTM, GRU, DCNN, and CNN-BiLSTM
architectures. The proposed DCNN-LSTM hybrid leverages
CNNs for spatial pattern extraction and LSTMs for sequential
learning, resulting in an effective framework for time-series

forecasting.

Hybrid models included ARIMA- GBoost and DCNN-LSTM
combinations. The DCNN-LSTM architecture processes input
sequences through convolutional layers to extract local patterns,
followed by LSTM layers to capture long-term temporal
dependencies. SHAP was applied to interpret predictions
globally and locally, providing explanations for both overall
model behavior and individual predictions.

d. Evaluation Metrics

Evaluation criteria included RMSE, MAE, and R? for regression
accuracy, while classification effectiveness was measured
through Precision, Recall, and the F1 Score for AQI levels.

1I. Results

a. Baseline Model Performance

Random Forest achieved the highest accuracy among
traditional models (R? = 0.9938). XGBoost also performed well,

while SVR underperformed due to
challenges in  handling  high-dimensional nonlinear
dependencies.
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b. Deep Learning and Hybrid Models

LSTM and Bi-LSTM
dependencies but lacked spatial feature extraction capabilities.

successfully modelled temporal

GRU balanced accuracy with reduced computational demand.
DCNN- LSTM outperformed all models with R? =

1.0 and RMSE = 5.74, delivering nearly perfect predictions.
ARIMA-XGBoost provided a competitive alternative for short-
term forecasts, particularly in resource-constrained settings.

TABLE I: Comparison
Model R? RMSE MAE
Breiman’s RF 0.9938 8.21 6.15
XGBoost 0.9925 9.03 6.82
LSTM 0.9952 7.15 5.32
Bi-LSTM 0.9968 6.89 5.01
DCNN-LSTM 1.000 5.74 4.12

¢. Explainability with SHAP

The SHAP-based interpretability study identified PM2.5,
NOz, and SO: as the primary pollutants contributing to AQI
forecasts. Visualization through summary and force plots
offered both overall trend insights and case-specific
explanations. Additionally, the correlation heatmap indicated
a strong positive association between CO and NO, suggesting
shared emission sources such as vehicular traffic and
industrial activities.

d. Seasonal and Monthly Trends

The models revealed that winter months consistently recorded
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Fig 4.1: Monthly trend of air pollution levels

the worst AQI due to particulate matter accumulation, while
summer saw higher ozone levels linked to photochemical smog.
These findings validated the model's robustness against real-
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world variations.

e. Correlation Analysis and Feature Importance

A correlation heatmap was developed to study relationships
among pollutants, aiding feature selection and improving model
interpretability for accurate air quality forecasting. Key insights
include: CO and NO showing strong positive correlation,
reflecting common sources such as vehicles and industrial
emissions; PM2.5 and PM10 exhibiting very high correlation,
both arising from combustion and construction activities; and Os
and NOx displaying negative correlation, consistent with
photochemical reactions where NOx reduces ozone levels.

SHAP
contributions toward AQI predictions, enhancing transparency
and trust in the model. Results showed PM2.5 as the most
impactful pollutant on AQI, with PM10 and NO as strong
secondary contributors. CO and Os; showed mixed impact

analysis was applied to interpret pollutant

depending on conditions, while NO: and SO exhibited non-
linear interactions highlighted by SHAP analysis.
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Figure 4.3: Correlation Heatmap of Air Pollutants

To promote interpretability concerning model predictions, SHAP
(Shapley Additive Explanations) was employed for the analysis
of feature importance. This elucidation results in understanding
the influence of each pollutant on the predicted AQI values,
hence improving the system's transparent and trustworthy
character.

The following are some key insights derived from the SHAP
summary:

* PM2.5 was the strongest and most consistently impacting
pollutant among the features used for forecasting the AQI.

* PM10 and NO followed in importance and still significantly
contributed to the forecast across different time intervals,
strengthening their position as major agents of air pollution.
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* CO and O3 exhibited variable SHAP values, reflecting their
mixed impact on AQI depending on varying atmospheric
conditions.

* The model effectively captured non-linear interactions
between pollutants, particularly NO2 and SO2, with these
complex relationships being highlighted through SHAP

visualizations.

This explainable Al component not only strengthens the

system’s transparency but also supports data-driven

environmental policy decisions by identifying which pollutants
to prioritize for mitigation.
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Figure 4.4: SHAP Summary Plot

II1. Conclusion

This study confirms that the DCNN- LSTM hybrid model,
enhanced with SHAP-based interpretability, provides both high
predictive accuracy and actionable transparency. It bridges the
gap between Al innovation and real-world policy deployment.
Key contributions include comprehensive comparison of
traditional, ML, and DL models, integration of SHAP for
interpretability making forecasts explainable to stakeholders, and
seasonal pollutant trend insights for targeted policy interventions.

Future directions encompass integration of real-time IoT
sensor data for live forecasting, extension to multi-city datasets
for generalization, optimized SHAP computation for faster
scalable explanations, and exploration of Graph Neural Networks
and quantum-inspired models.

The study reinforces the goals of SDG 3 and SDG 11 by
promoting healthier living conditions and fostering sustainable
city planning.
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