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Abstract Accurate air quality forecasting is vital for public 

health and urban policy-making. Conventional statistical 

approaches, including ARIMA fail to capture nonlinear 

patterns but algorithms like Random Forest and XGBoost, 

despite their strengths, fail to represent long-term sequential 

relationships in data.. Deep learning approaches, including 

LSTM and CNN hybrids, improve accuracy but are limited 

by poor interpretability. This work proposes a hybrid DCNN- 

LSTM framework integrated with SHAP for explainability. 

Experiments on Delhi air quality data demonstrate that the 

model achieves superior accuracy (R² = 1.000, RMSE = 5.74) 

while identifying PM2.5, NO₂, and SO₂ as key pollutants, 

thereby ensuring both predictive performance and 

transparency. 

Keywords—Air Quality Forecasting, Deep Learning, 

CNN-LSTM, Explainable AI, SHAP, Time Series, PM2.5 

 

I. INTRODUCTION 
 

Air pollution has emerged as one of the most pressing 

challenges in modern urban environments. Hazardous 

accumulations of particulate matter (PM2.5, PM10) and gases 

(NO₂, SO₂, O₃) are common in cities like Delhi, resulting in 

adverse health impacts including respiratory issues, 

cardiovascular risks, and reduced longevity., and economic 

losses. Accurate air quality forecasting is essential for issuing 

health warnings, designing urban policies, and mitigating 

adverse impacts linear regression has been widely used but are 

restricted by assumptions of linearity and stationarity. These

methods are often unable to represent the complex nonlinear 

behaviors and long-range time dependencies found in environmental 

datasets. Deep learning approaches such as LSTM and CNN offer 

superior performance by modelling temporal and spatial 

dependencies but lack interpretability, making them difficult to 

trust in sensitive policy domains. 

This work addresses these challenges by integrating Explain 

able AI(XAI)techniques, specifically SHAP, with a hybrid 

DCNN-LSTM model. The aim is to achieve high predictive 

accuracy while providing transparency about pollutant 

contributions, linking advanced technical capabilities with 

practical implementation in real-world contexts. 

 

II. LITERATURE REVIEW 

 

A. Traditional Approaches 

Traditional approaches like ARIMA and regression are 

primarily suited for linear relationships and short-term 

forecasting tasks [1]. However, they fail to generalize in 

multivariate, nonlinear contexts. Algorithms like Support vector 

regression [2] and Random forests [3] provide improved 

flexibility and robustness but lack the ability to model long-range 

temporal patterns. 

B. Deep Learning Models 
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Neural networks have advanced the state of air quality 

forecasting. LSTM/Bi- One of the key strengths of LSTM 

networks lies in their ability to model dependencies that span over 

long time intervals in time-series data. [5]. GRU provides a 

lightweight alternative to LSTM with reduced computational cost 

[6]. Hybrid CNN-LSTM architectures leverage CNNs for spatial 

representation and LSTMs for capturing sequential dependencies 

in time-series data. [7]. Studies show that these architectures 

significantly outperform traditional methods, particularly in 

multivariate datasets with strong spatiotemporal dynamics [8]. 

C. Hybrid Models 

Hybrid approaches, such as ARIMA- LSTM and DCNN- 

LSTM, combine statistical rigor with deep learning flexibility 

[10]. These models enhance robustness by leveraging 

complementary strengths. For instance, ARIMA handles linear 

trends while  neural networks capture nonlinear patterns [11]. 

D. Explainable AI in Forecasting 

Despite high predictive accuracy, deep learning models face 

criticism for their "black box" nature. To address the black-box 

nature of deep models, XAI methods including LIME and SHAP 

[9] are employed. SHAP, grounded in cooperative game theory, 

provides reliable feature importance values, allowing clear 

insights into how pollutants affect AQI predictions. [12]. 

III. SYSTEM ARCHITECTURE 

 

a. Architecture Overview 

The system architecture follows a modular workflow that 

connects data entry to preparatory operations, modeling 

functions, and final visualization outputs. The system integrates 

several deep learning models with traditional models through an 

organized backend system that stores data. The modular 

organization supports both scalability and explainable AI 

capabilities by allowing model-specific requests with cases such 

as DCNN-LSTM and SHAP-based outputs. 

 

 

 

 

b. Enhanced XAI-Powered Architecture 

The enhanced XAI-Powered Air Quality Forecasting system 

with DCNN- LSTM provides seamless deployment capabilities 

combined with SHAP interpretability and project monitoring 

features. This structured modular framework enables developers, 

analysts, and coordinators to maintain efficient performance in 

their work areas. After training, the DCNN-LSTM model 

receives deployment preparation for use through backend servers 

and application programming interfaces. 

 

c. System Components and Workflow 

The deployed model enables both delayed and time-sensitive 

predictions of AQI. Model interpretability is achieved through 

SHAP, enabling analyst visualization of which pollutants modify 

prediction results. The Python-based Jupyter Notebooks 

implementation supports future deployment as web dashboards 

while maintaining individual function boundaries including data 

handling, model inference, interpretability, and project status 

tracking. 

The workflow comprises: (1) Historical AQI data ingestion 

and preprocessing; (2) Model deployment to Flask; (3) User input 

reception through notebook/web UI; 

(4) Model prediction generation; (5) SHAP explanation of 

predictions; (6) Visual output display; and (7) Sprint tracking 

maintenance via external tools. 
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I. METHODOLOGY 

a. Data Gathering and Preparation 

 

Air quality data for Delhi was collected from publicly 

available repositories, including pollutants (PM2.5, PM10, NO₂, 

SO₂, CO, O₃) and meteorological variables. Preprocessing 

involved handling missing values and outliers, normalization of 

numerical features, and encoding temporal variables (season, 

month). 

b. Exploratory Data Analysis 

EDA revealed seasonal and monthly trends. PM2.5 and PM10 

peaked during winter d u e t o s t u b b l e b u r n i n g 

a n d temperature inversion. O₃ concentrations were higher in 

summer due to photochemical activity. Correlation heatmaps 

confirmed strong relationships between pollutants. 

c. Model Development 

This research uses algorithms such as Linear Regression, 

SVR, RF, and XGBoost [4], while the deep learning category 

included LSTM, Bi-LSTM, GRU, DCNN, and CNN-BiLSTM 

architectures. The proposed DCNN-LSTM hybrid leverages 

CNNs for spatial pattern extraction and LSTMs for sequential 

learning, resulting in an effective framework for time-series 

forecasting. 

Hybrid models included ARIMA- GBoost and DCNN-LSTM 

combinations. The DCNN-LSTM architecture processes input 

sequences through convolutional layers to extract local patterns, 

followed by LSTM layers to capture long-term temporal 

dependencies. SHAP was applied to interpret predictions 

globally and locally, providing explanations for both overall 

model behavior and individual predictions. 

d. Evaluation Metrics 

 

Evaluation criteria included RMSE, MAE, and R² for regression 

accuracy, while classification effectiveness was measured 

through Precision, Recall, and the F1 Score for AQI levels. 

 

II. Results 

 

a. Baseline Model Performance 

Random Forest achieved the highest accuracy among 

traditional models (R² = 0.9938). XGBoost also performed well, 

while S V R  u n d e r p e r f o r m e d d u e t o 

challenges in  handling high-dimensional  nonlinear 

dependencies. 

b. Deep Learning and Hybrid Models 

LSTM and Bi-LSTM successfully modelled temporal 

dependencies but lacked spatial feature extraction capabilities. 

GRU balanced accuracy with reduced computational demand. 

DCNN- LSTM outperformed all models with R² = 

1.0 and RMSE = 5.74, delivering nearly perfect predictions. 

ARIMA-XGBoost provided a competitive alternative for short- 

term forecasts, particularly in resource-constrained settings. 

TABLE I: Comparison 

Model R² RMSE MAE 

Breiman’s RF 0.9938 8.21 6.15 

XGBoost 0.9925 9.03 6.82 

LSTM 0.9952 7.15 5.32 

Bi-LSTM 0.9968 6.89 5.01 

DCNN-LSTM 1.000 5.74 4.12 

 

c. Explainability with SHAP 

The SHAP-based interpretability study identified PM2.5, 

NO₂, and SO₂ as the primary pollutants contributing to AQI 

forecasts. Visualization through summary and force plots 

offered both overall trend insights and case-specific 

explanations. Additionally, the correlation heatmap indicated 

a strong positive association between CO and NO, suggesting 

shared emission sources such as vehicular traffic and 

industrial activities. 

 

d. Seasonal and Monthly Trends 

The models revealed that winter months consistently recorded 

 

 

the worst AQI due to particulate matter accumulation, while 

summer saw higher ozone levels linked to photochemical smog. 

These findings validated the model's robustness against real- 
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world variations. 

e. Correlation Analysis and Feature Importance 

A correlation heatmap was developed to study relationships 

among pollutants, aiding feature selection and improving model 

interpretability for accurate air quality forecasting. Key insights 

include: CO and NO showing strong positive correlation, 

reflecting common sources such as vehicles and industrial 

emissions; PM2.5 and PM10 exhibiting very high correlation, 

both arising from combustion and construction activities; and O₃ 

and NOx displaying negative correlation, consistent with 

photochemical reactions where NOx reduces ozone levels. 

SHAP analysis was applied to interpret pollutant 

contributions toward AQI predictions, enhancing transparency 

and trust in the model. Results showed PM2.5 as the most 

impactful pollutant on AQI, with PM10 and NO as strong 

secondary contributors. CO and O₃ showed mixed impact 

depending on conditions, while NO₂ and SO₂ exhibited non- 

linear interactions highlighted by SHAP analysis. 
 

 

To promote interpretability concerning model predictions, SHAP 

(Shapley Additive Explanations) was employed for the analysis 

of feature importance. This elucidation results in understanding 

the influence of each pollutant on the predicted AQI values, 

hence improving the system's transparent and trustworthy 

character. 

The following are some key insights derived from the SHAP 

summary: 

• PM2.5 was the strongest and most consistently impacting 

pollutant among the features used for forecasting the AQI. 

• PM10 and NO followed in importance and still significantly 

contributed to the forecast across different time intervals, 

strengthening their position as major agents of air pollution. 

• CO and O3 exhibited variable SHAP values, reflecting their 

mixed impact on AQI depending on varying atmospheric 

conditions. 

• The model effectively captured non-linear interactions 

between pollutants, particularly NO2 and SO2, with these 

complex relationships being highlighted through SHAP 

visualizations. 

This explainable AI component not only strengthens the 

system’s transparency but also supports data-driven 

environmental policy decisions by identifying which pollutants 

to prioritize for mitigation. 

 

 

 

 

 

III. Conclusion 

This study confirms that the DCNN- LSTM hybrid model, 

enhanced with SHAP-based interpretability, provides both high 

predictive accuracy and actionable transparency. It bridges the 

gap between AI innovation and real-world policy deployment. 

Key contributions include comprehensive comparison of 

traditional, ML, and DL models, integration of SHAP for 

interpretability making forecasts explainable to stakeholders, and 

seasonal pollutant trend insights for targeted policy interventions. 

Future directions encompass integration of real-time IoT 

sensor data for live forecasting, extension to multi-city datasets 

for generalization, optimized SHAP computation for faster 

scalable explanations, and exploration of Graph Neural Networks 

and quantum-inspired models. 

The study reinforces the goals of SDG 3 and SDG 11 by 

promoting healthier living conditions and fostering sustainable 

city planning. 
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