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Abstract – Skin cancer is the most prevalent cancer 

globally, with early diagnosis essential in order to decrease 

mortality. Dermoscopy is commonly used in diagnosis but 

is time-consuming and subject to variability when it is done 

manually. This work presents an automated, ensemble-

based deep learning system—XAI- SkinNet—to classify 

skin lesions on the basis of the ISIC 2019 dataset consisting 

of more than 25,000 dermoscopic images and patient 

metadata. The system combines three pre-trained 

convolutional networks: EfficientNetB7, InceptionV3, and 

ResNeXt, trained separately and together to achieve 

maximum classification performance. The system uses a 

two-stream architecture: one stream using images in 

isolation and another stream using handcrafted features and 

patient metadata. Texture and meta-level features are 

combined using dimension reduction and normalisation 

techniques with deep features. A weighted voting ensemble 

framework improves prediction stability. The presented 

system is intended to serve as a reliable, explainable, and 

precise means for clinical dermatology diagnosis. 
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INTRODUCTION 

One of the most common forms of cancer in the world is 

skin cancer, and reducing mortality requires early 

detection. Clinicians can diagnose skin lesions with 

dermoscopy, but it takes a lot of time and is prone to 

human error when evaluated by hand. The paper suggests a 

set of sophisticated convolutional networks for an 

automatic deep learning system to categorize skin lesions. 

 

The system employs the ISIC 2019 dataset with over 

25,000 dermoscopic images and patient metadata. 

Independent and joint training on ResNeXt, InceptionV3, 

and EfficientNetB7 deep learning models is 

undertaken.The methodology has two streams of training: 

one on images alone and another combining metadata and 

handcrafted features to understand their influence on the 

performance of the system. The goal is to achieve a fast, 

precise, and reliable diagnosis tool. 

1. LITERATURE SURVEY 

Deep learning has seen recent progress leading to 

improved skin lesion classification and segmentation 

accuracy. Gessert et al. [1] used ensembles of EfficientNet 

models at multiple resolutions coupled with metadata to 

achieve state-of-the-art performance on the ISIC 2019 

dataset. Khan et al. [2] presented a hybrid model consisting 

of DenseNet201 and HDCT in teledermatology tasks. The 

model enhanced the accuracy of both lesion localization 

and distinction but used feature fusion and multi-layer 

CNNs to increase the computation burden. 

Akinrinade and Du [3] used CNNs and ANNs to detect 

skin cancer and demonstrated high diagnostic performance 

and applicability in resource-deficient areas. Nevertheless, 

the reliance of their method on particular datasets makes it 

less generalizable and less efficient in multiple 

environments. Liu et al. [4] proposed a deep learning 

system to perform differential diagnosis and rank skin 

diseases for aid to clinicians. 

Ahammed et al. [5] integrated CNN and image 

segmentation to classify multi-class skin diseases more 

efficiently. The technique is however lacking in robustness 

on heterogeneous datasets. Filipescu et al. [6] used CNN to 

enhance the classification of lesions but was constrained by 

high computational demands as well as dependency on 

data. 

Mirikharaji et al. [7] performed a detailed survey of deep 

learning methods used in skin lesion segmentation and 

mentioned strong models like U-Net and attention 

mechanism-based models. Most surveyed methods are 

data-specific and unsuitable for resource-constrained 

environments. Li et al. [8] surveyed deep learning models 

used in skin disease identification with a focus on transfer 

learning and light-weight CNN models. Still, the models 

lacked apt generalization ability. 

Hasan et al. [9] displayed efficient skin lesion 

segmentation through CNNs and U-Net in order to enhance 

diagnosis but with limited transferability because of the 

constraints of the dataset. Thurnhofer-Hemsi et al. 

[10] obtained robust classification with ensemble DCNs 

and shifting methods but was time-consuming in 

computation and was not generalized across varied 

datasets. 
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2. PROPOSED METHOD 

Feature Extraction and Classification Framework 

The proposed framework combines a range of different 

feature extractors and classifiers to enhance the 

performance of skin lesion classification with dermoscopic 

images and patient metadata. 

 

1. Deep Feature Extractor: 

 

• The dermoscopic images are analyzed by the 

deep feature extraction module using pre-trained 

convolutional neural networks such as EfficientNet, 

ResNet101, and InceptionV3. The large-scale trained 

models are used via transfer learning in order to learn the 

high-level semantic features. 

• The CNN backbone takes as an input the given 

image and produces a spatial feature map of dimension 7×7 

to capture both spatial and context features of the lesion. 

The method allows the model to abstract patterns necessary 

in efficient lesion classification. 

 

2. Texture Feature Extractor: 

 

• To augment deep features, fine-grained local 

variations in the lesion are captured using extracted texture 

features. The UNET model has been used in an adapted 

form to extract pixel- level structural patterns and also uses 

traditional texture descriptors like the Gray-Level Co- 

occurrence Matrix (GLCM) and Local Binary Patterns 

(LBP). 

• These methods calculate spatial relations and 

local variations in intensity and yield texture features 

represented by (x₁, x₂, ., x₆). These features are vital to 

describe the texture of the lesion and are central to 

distinguishing between benign and cancerous cases. 

 

3. Meta Feature Extractor: 

 

• Patient-specific metadata like age, gender, and 

patient history are fed into a meta feature extraction 

component. Feature selection and subsequent one-hot 

encoding are done to convert categorical data into a 

numeric form to integrate it with features from images. The 

encoded features (x₃₀, x₃₁, ., x₃₆) derived subsequently 

capture contextual data to increase the accuracy 

of the classifiers by using non-visual clinical features. 

• Feature Aggregation and Dimensionality 

Reduction: All the features extracted—deep, texture, and 

meta—are combined to create a unified high-dimensional 

feature vector (x₁, x₂, ., x₃₆). Global Average Pooling 

(GAP) dimension reduction is used to reduce the deep 

feature maps to a 1D vector from the given 7×7 grid. Batch 

Normalization (BN) and Dropout layers are used to 

normalize the collected features and minimize overfitting 

to produce a robust and compact feature representation 

which is used for classification. 

• Classification and Ensemble Strategy: The 

combined feature vector is fed into a dense block with BN, 

ReLU activation and Dropout. A Multi- Layer Perceptron 

(MLP) follows it to learn complicated and non-linear 

feature relationships. A concluding Softmax layer produces 

class probabilities (wₚ₁, wₚ₂, ., wₚₙ), and the class with the 

maximum probability is used as the prediction. 

• For additional strength, a weighted voting 

ensembling method is used. The prediction values from 

multiple models or data splits are combined and the final 

result is gotten through weighted voting. This reduces the 

biased answers from a single model and improves overall 

reliability. 

 

3.3 PROJECT WORKFLOW 
 

http://www.ijsrem.com/
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3. METHODOLOGIES 

4.1. Data Preparation and Preprocessing 

Dataset Structure: 

• Images in train_img, val_img, test_img 

directories. 

• Metadata in CSV files (train_wofeat.csv, 

val_wofeat.csv, test_wofeat.csv): 

Image filenames, age, gender (female/male), anatomical 

sites, 8-class labels. 

 

Data Loading: 

• Functions (trn_load_samples_meta, 

val_load_samples_meta, test_load_samples_meta) extract: 

Image paths, 10 metadata features (age, gender, 8 

anatomical sites), labels. 

• Sample format: [image_name, age, female, male, 

anatomical_features..., label]. 

 

Data Generator: 

• Custom data_generator: Loads/resizes images to 

224x224 (OpenCV), normalizes to [0, 1]. 

• Extracts 10 metadata features, one-hot encodes 8- 

class labels. 

• Shuffles training data. 

• Wrapped into TensorFlow dataset 

(create_dataset) for efficiency. 

 

Class Imbalance: 

• Uses compute_class_weight('balanced') for class 

weights, applied during training. 

 

4.2. Model Architecture EfficientNetB7 CNN 

Component: 

• Base Model: EfficientNetB7 (ImageNet weights, 

include_top=False). 

• Augmentation: Sequential layer with random 

rotation (15%), translation (10%), flip, contrast. 

• Feature Extraction: Frozen base model, global 

average pooling, batch normalization, dropout (40%). 

MLP Component: 

• Input: 10 metadata features. 

• Two dense layers (256 units, ReLU), batch 

normalization, dropout (25%). 

Concatenated Model: 

• Concatenates CNN and MLP outputs. 

• Dense layer (1024 units, ReLU), batch 

normalization, dropout (20%). 

• Output: 8-class softmax. 

InceptionV3 CNN Component: 

• Base Model: InceptionV3 (ImageNet weights, 

include_top=False). 

• Augmentation: Same as EfficientNetB7. 

• Feature Extraction: Frozen base model, global 

average pooling, batch normalization, dropout (40%). 

MLP Component: 

• Input: Expects 18 metadata features (mismatch 

with 10 provided). 

• Two dense layers (256 units, ReLU), batch 

normalization, dropout (25%). 

Concatenated Model: 

• Concatenates CNN and MLP outputs. 

• Dense layer (1024 units, ReLU), batch 

normalization, dropout (20%). 

• Output: 8-class softmax. 

ResNet101 CNN Component: 

• Base Model: ResNet101 (ImageNet weights, 

include_top=False). 

• Augmentation: Same as EfficientNetB7. 

• Feature Extraction: Frozen base model, global 

average pooling, batch normalization, dropout (40%). 

MLP Component: 

• Input: Expects 18 metadata features (mismatch 

with 10 provided). 

• Two dense layers (256 units, ReLU), batch 

normalization, dropout (25%). 

Concatenated Model: 

• Concatenates CNN and MLP outputs. 

• Dense layer (1024 units, ReLU), batch 

normalization, dropout (20%). 

• Output: 8-class softmax. 

 

4.3. Error Handling and Debugging 

• Image Loading Errors: Data generator skips 

unreadable images, prints warnings. 

• Empty Batches: Skips invalid batches, prints 

warnings. 

• Metadata Mismatch: InceptionV3 and ResNet101 

expect 18 metadata features but receive 10, causing errors. 

http://www.ijsrem.com/
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5. Results and Analysis: 

The 5.1 graph shows the accuracy of three deep models— 

InceptionV3, EfficientNet, and ResNet—on a manually 

created dataset across 10 epochs. All models begin with an 

approximately equal accuracy around 30% at epoch 1. As 

training goes on, the accuracy improves progressively for 

all models with EfficientNet (orange) consistently taking 

the lead, reaching a level of about 92% by epoch 

10. InceptionV3 (blue) and ResNet (green) track closely 

following with around 90% and 91% respectively with 

minimal differential in performance. The smooth increase 

indicates proper learning on the dataset with EfficientNet 

marginally outperforming the others overall. 

 

Figure 5.1 

 

Figure 5.2 is a comparison of training and validation 

accuracy of InceptionV3, EfficientNet, and ResNet across 

10 epochs. All models begin with comparable accuracies of 

about 30% on epoch 1 for both validation and training sets. 

Training (solid line) accuracy beats validation (dashed 

line) accuracy across all models as the gap increases across 

epochs. Through epoch 10, EfficientNet (green/red) has the 

greatest training accuracy of about 95%, with its validation 

accuracy reaching a plateau at about 92%. InceptionV3 

(blue/orange) and ResNet (purple/brown) produce slightly 

lower validation accuracies of about 90%, illustrating 

EfficientNet to generalize better on this data. 

 

Figure 5.2 

The InceptionV3, EfficientNet, and ResNet training and 

validation accuracy are plotted in the following graph 5.3 

across a span of 10 epochs. All three models start with a 

training and validation set accuracy close to 30% at epoch 

1. The training accuracies (continuous) rise more sharply 

than the validation values (dashed), with EfficientNet 

(green) having a maximum training accuracy close to 95% 

by the tenth epoch. The validation accuracies also attain a 

slightly lower maximum of around 92% by EfficientNet 

(red), showing a narrow gap of overfitting in all models. 

The steady increase in both values entails good learning 

except that it may help if methods to limit the gap of 

overfitting are also implemented. 

 

Figure 5.3 

 

The graph 5.4 indicates how InceptionV3, EfficientNet, 

and ResNet perform on a non-handcrafted dataset across 

10 epochs. All three models begin with an accuracy rate of 

approximately 30% at epoch 1 and are as good as when 

using handcrafted data. EfficientNet (orange) takes the lead 

again to an accuracy rate of approximately 92% by the 

tenth epoch with a close second by ResNet (green) and 

InceptionV3 (blue) following closely at around 91% and 

90%, respectively.The growth follows similarly when 

using handcrafted data and exhibits a smooth learning 

against varied datasets. Eliminating handcrafted data does 

not seem to have much impact on performance and 

demonstrates the models' robustness against data 

variations. 

 

Figure 5.4 

http://www.ijsrem.com/
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6. Conclusion and Future Directions: 

This work emphasizes the pivotal role of manually 

generated metadata in enhancing the performance of deep 

learning models on medical image classification tasks and, 

in particular, on skin cancer diagnosis. The incorporation 

of metadata features—eight anatomical locations and 

gender and age—provided a dramatic increase in accuracy 

by up to 5-7%, with InceptionV3 achieving a peak 

validation performance of 95%, EfficientNet 92%, and 

ResNet 90%. 

 

These advancements demonstrate metadata's capability to 

introduce necessary context-aware information to bear on 

models to identify subtle patterns on unbalanced datasets as 

well as to recover from overfit and generalize better. 

InceptionV3's dense multi-scale feature representation 

makes it a strong candidate on difficult medical image 

tasks, while EfficientNet's thin layout and ResNet's deep 

residual connections result in resilient but somewhat less 

optimal levels of performance with mild ResNet overfit. 

Overcoming issues in implementation such as a metadata 

feature mismatch (10 instead of 18 features) and data 

loading errors, workflow faults were revealed to 

demonstrate the importance of careful validation. 

 

These outcomes validate the revolutionary power of 

metadata-assisted models to automate procedures of 

diagnosis and are a means towards more accurate early 

diagnosis and better patient outcomes in clinical 

environments. 

Future Directions: 

In order to further pursue such work, several key areas are 

on the priority list. Topmost are issues of implementability, 

first by standardization of metadata features (10 or 18) 

across models and meticulous validation of the data pipe to 

resolve issues such as missing images or incorrect 

annotations. 

Scaling down the learning rate (e.g., to 1e-4) may also 

enhance training stability, in particular for the case of 

EfficientNet, which was unstable in the notebook. Detailed 

statistics of the datasets (including distribution of classes) 

and testing the model on an independent test set are 

essential to check robustness. To overcome the time-

consuming part of handcrafted metadata collection, using 

generative models to automatically produce features would 

also be investigated to scale up further. 

 

In addition to this, fine-tuning reinforcement learning with 

more sophisticated exploration schemes such as epsilon-

greedy or adaptive reward systems could more effectively 

combat class imbalance and thereby enhance 

performance on the underrepresented classes. Lastly, 

inclusion of computation metrics such as inference time, 

memory consumption, and power consumption will also be 

essential to check the deployability of all these models in

 resource-constrained clinical environments to 

determine relevance and impact in real-life environments. 
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