
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6792 | Page 1

YAML vs JSON for Configuration Management: A Technical

Comparison

Anishkumar Sargunakumar

Abstract

Configuration management plays a pivotal role in modern software development, enabling applications to adapt to

varying environments and operational needs seamlessly. YAML and JSON have emerged as the two most widely

adopted formats for configuration management. This paper provides a comprehensive technical comparison of

YAML and JSON, evaluating their syntax, readability, features, and use cases, particularly in Java-based

applications. It concludes with insights into choosing the appropriate format based on specific requirements.

Keywords: YAML, JSON, Java, Microservice

I. Introduction

Modern software applications often rely on external configuration files to enable flexibility, scalability, and

maintainability. YAML (YAML Ain't Markup Language) and JSON (JavaScript Object Notation) are two popular

formats for representing configuration data. While both are human-readable and widely supported, they differ

significantly in syntax, expressiveness, and applicability. This paper explores these differences, focusing on their

use in Java-based applications.

II. YAML Overview

• Characteristics of YAML

YAML is human readable where it’s primary focus is readability, achieved through indentation and

minimal use of special characters. YAML uses hierarchy representation where it uses indentation

to represent nested structures. It has flexible typing where it supports various data types such as

strings, integers, lists, and dictionaries. There is support for anchors and aliases, where reuse data

with anchors (&) and aliases (*), reducing redundancy. Multi-line strings in YAML allows easy

representation of multi-line strings with pipe (|) and greater-than (>) symbols. Example of YAML

configuration is shown in figure 1.

Figure 1. YAML configuration

III. JSON Overview

• Characteristics of JSON

JSON is lightweight and compact where JSON uses a key-value pair format with minimal

verbosity. JSON is universally supported by virtually all programming languages, including Java.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6792 | Page 2

JSON relies on strict syntax rules such as double quotes for keys and values. JSON has array and

object representation where it uses square brackets ([]) for arrays and curly braces ({}) for objects.

Example of JSON configuration is shown in figure 2.

Figure 2. JSON configuration

IV. YAML vs JSON: A Technical Comparison

 YAML JSON

Syntax and Readability More readable due to its indentation-

based structure, making it intuitive

for humans but prone to indentation

errors.

Compact and consistent but can

become less readable for deeply

nested structures.

Features Offers advanced features like

comments, anchors, aliases, and

multi-line strings.

Lacks native support for comments

and advanced constructs but is

simpler and easier to parse.

Data Size Tends to be verbose due to its focus

on readability.

Compact and optimized for data

transfer over networks.

Parsing and

Performance

Parsing is slower due to its

complexity and flexibility.

Faster to parse due to its simpler

syntax.

V. Compatibility with Java

Both YAML and JSON are widely supported in Java through libraries like Jackson, SnakeYAML, and Gson.

However, their usage differs in practical scenarios.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6792 | Page 3

Figure 3. Parsing YAML in Java

Figure 3 demonstrates how to parse a YAML configuration file in Java using the SnakeYAML library. The

yaml.load method converts the YAML content into a Java Map, allowing easy access to configuration data like port

and host. The Yaml object processes the YAML string and outputs a map: {server={port=8080, host=localhost}}.

Figure 4. Parsing JSON in Java

This figure 4 illustrates how to parse JSON using Jackson, a popular library for handling JSON in Java. It converts

the JSON string into a Java Map, making the data easy to manipulate. The ObjectMapper reads the JSON string

and maps it to a Java object and outputs a map: {server={port=8080, host=localhost}}.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6792 | Page 4

VI. Use cases in Java Applications

i. YAML use cases

(a) Spring Boot Configuration: YAML is the default configuration format for Spring Boot

applications due to its readability and support for hierarchical structures.

Figure 5. Configuring database connection properties in a application.yml file.

This figure 5 snippet configures database connection properties in a Spring Boot application.

Spring Boot reads the application.yml file to initialize the DataSource bean. This YAML

snippet sets database connection URL, username, and password and is used to manage

environment-specific configurations.

(b) Complex Nested Configurations: YAML's indentation makes it ideal for deeply nested

configurations, such as defining multiple environments.

Figure 6. complex nested configuration

This figure 6 snippet defines two different environments for an application: development and

production. Each environment specifies a unique url to reflect its respective server endpoint.

The environments serves as the top-level key grouping the different environment

configurations. The development and production keys are indented under environments,

clearly defining their hierarchical relationship. Each environment has a specific url value,

representing the endpoint for that environment. This helps developers manage configurations

for multiple environments (e.g., local, staging, production) in a single file, avoiding

redundancy and confusion.

(c) Reusable Configurations: Use of anchors and aliases for shared configurations.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6792 | Page 5

Figure 7. Reusable Configurations

This figure 7 example uses YAML anchors and aliases to define reusable configurations,

reducing redundancy in repeated settings. &default defines a reusable block. <<: *default

merges the default configuration into server1 and server2. This simplifies managing shared

settings.

ii) JSON Use cases

(a) API payloads: JSON is widely used for transmitting data in RESTful APIs due to its

lightweight and compact nature. An example of json payload is shown in the figure 8 below.

Figure 8. Json payload

(b) Configuration for Libraries: Many Java libraries, such as Hibernate or Log4j, support JSON-

based configurations. Example of a library configuration in json is shown in Figure 9.

Figure 9. Hibernate configuration using JSON

(c) Cross Platform Configurations: JSON is often preferred when configurations need to be

shared across multiple platforms or programming languages. An example of microservices

architecture is shown below.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6792 | Page 6

Figure 10. Microservice architecture configuration

VII. Conclusion

YAML and JSON both serve as excellent choices for configuration management in Java-based applications, each

excelling in specific scenarios. YAML's human-readability and advanced features make it ideal for configuration-

heavy applications like Spring Boot. JSON's simplicity and performance make it the preferred choice for data

interchange and lightweight configurations. Developers should evaluate their project requirements, considering

factors like readability, performance, and tooling support, to select the most suitable format.

References

1. SnakeYAML Documentation: https://bitbucket.org/asomov/snakeyaml

2. Jackson JSON Processor: https://github.com/FasterXML/jackson

3. Spring Boot Reference Guide: https://spring.io/projects/spring-boot

http://www.ijsrem.com/

