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Abstract—Agriculture is a cornerstone of global economies, 
supplying food, employment, and raw materials for numerous 
industries. Yet, one of the sector’s enduring challenges is crop 
disease, which can drastically reduce yields and threaten food 
security. Traditional approaches to identifying plant diseases 
rely on manual inspections and expert evaluations, which are 
often slow, costly, and vulnerable to human error. Without early 
diagnosis, diseases can spread uncontrollably, leading to major 
economic setbacks for farmers and decreased crop output. To 
overcome these issues, this project introduces an AI- powered 
system for detecting and diagnosing crop diseases. It combines 
advanced deep learning, natural language processing (NLP), 
and geospatial mapping technologies. At its core is YOLOv8 
(You Only Look Once, version 8), a powerful Convolu- tional 
Neural Network (CNN) designed for real-time image-based 
detection. Trained on a robust, annotated dataset from 
Roboflow, the model accurately identifies a variety of diseases 
affecting key crops such as rice, wheat, and maize. 

Beyond detection, the system includes an intelligent chatbot 

powered by Large Language Models (LLMs). This virtual 

as- sistant offers instant, tailored advice on diagnosis, 
treatment options, and preventive strategies. It provides farmers 
with user- friendly guidance in natural language, making it 

accessible even to those with limited technical knowledge. The 
chatbot serves as a virtual agricultural consultant, 

recommending effective pesticides, organic treatments, and 
disease management practices. A standout feature of this 
project is its geospatial mapping capability. By integrating 

OpenStreetMap’s Overpass API, the system helps farmers 
locate nearby agricultural supply stores after a disease is 
identified. This allows quick access to the necessary products 

like pesticides or fertilizers, helping farmers 
respond promptly to disease outbreaks. Overall, the system 
presents a comprehensive AI-driven approach to crop disease 
management by combining image- based detection, interactive 
chatbot support, and location-based resource mapping. By 
reducing the dependency on manual inspection, enhancing 
decision-making, and streamlining access to agricultural inputs, 
it promotes more efficient, tech-enabled farming. This real-time, 
intelligent solution not only boosts productivity but also 
minimizes economic losses, paving the way for a more 
sustainable and resilient agricultural future. 

Keywords: Plant Disease Detection, YOLOv8 CNN, Agricul- 
tural AI, Intelligent Chatbot, LLMs in Farming, Plant 
Pathology AI, GIS Mapping, OpenStreetMap API, Smart 
Farming, AI- Enhanced Agriculture. 

 

 

 

1.INTRODUCTION 
Agriculture is one of the most vital sectors of the global 

economy, providing food, employment, and raw materials for 

various industries. However, the productivity and sus- 

tainability of agriculture are constantly threatened by crop 

diseases, which can cause significant yield losses if not de- 

tected and treated in time. Traditional methods of disease 

detection primarily rely on visual inspection by farmers and 

agricultural experts, an approach that is often subjective, time- 

consuming, and prone to error, leading to delayed intervention 

and potential disease spread [9]. In many regions, small-scale 

farmers—who represent the majority of agricultural produc- 

ers—lack consistent access to expert knowledge, making early 

and accurate disease identification even more challenging. 

With the advancement of artificial intelligence (AI) and 

machine learning (ML), deep learning models have emerged 

as powerful tools for automating the detection and classi- 

fication of plant diseases. Convolutional Neural Networks 

(CNNs) have demonstrated remarkable accuracy in image- 

based classification tasks, making them highly suitable for 

disease detection in crops [4]. The You Only Look Once 

(YOLO) object detection framework, in particular, has gained 

popularity due to its real-time processing capabilities and high 

accuracy [3]. Recent advancements in YOLOv8 further 

improve both speed and precision, enabling real-time field 

applications even on modest hardware [1]. Beyond detection, 

timely diagnosis and treatment recom- mendations are crucial 

for effective crop disease management. Large Language 

Models (LLMs) now power conversational AI that can serve 

as virtual agricultural assistants, analyz- ing symptoms, 

suggesting treatments, and offering preven- tive measures [2]. 

By embedding an AI-driven chatbot di- rectly into a disease-

detection platform, farmers gain imme- diate, context-aware 

advice without needing direct access to agronomists or 

pathologists. Another critical challenge is the accessibility of 

necessary inputs—pesticides, fertilizers, and resistant 

varieties. Farmers often struggle to locate nearby supply 

outlets promptly, delay- ing disease control measures. 

Leveraging geospatial technolo- gies such as 

OpenStreetMap’s Overpass API allows real-time mapping of 

local plant and pesticide shops [15]. By integrating real-time 

detection, AI-driven diagnosis, and geolocation of resources, 

farmers receive a comprehensive support system for 

identifying diseases, receiving expert guidance, and sourcing 
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treatments in one unified workflow. This project aims to de- 

velop a unified, AI-driven crop disease detection and 

diagnosis platform with three core components:  

1) Real-Time Detection: Implement a YOLOv8 CNN model 

trained on a Roboflow-annotated dataset to ac- curately detect 

diseases in rice, wheat, and maize crops [1][5][6].  

2) Chatbot-Driven Advisory: Integrate a Google Gemini 

Flash–powered chatbot to deliver interactive diagnosis, 

treatment recommendations, and preventive measures, 

bridging the agronomic knowledge gap [2].  

3) Geospatial Resource Mapping: Employ OpenStreetMap’s 

Overpass API to map nearby plant nurseries and pesticide 

shops based on user location, facilitating quick procurement 

of inputs [15].  

By combining these features into a Streamlit web application, 

the system will enable farmers to rapidly identify crop dis- 

eases, access expert guidance, and obtain necessary treatment 

supplies—ultimately reducing yield losses and improving 

agri- cultural productivity. 

2. RELATED WORK 
Automated crop disease detection has seen rapid advance- 

ments through the application of AI, ML, and DL tech- 

niques, aiming to overcome the limitations of traditional 

manual inspection. In this section, we review prior work 

across the three pillars of our system—real-time image-based 

detection, chatbot-driven diagnosis, and geospatial resource 

mapping—and highlight how each informs and contrasts with 

our proposed methodology. 

1. AI-

based Image Processing for Disease Detection: Deep 

learning, particularly Convolutional Neural Networks 

(CNNs), underpins most modern disease detection systems. 

Early efforts fine-tuned established architectures on plant 

disease datasets. Too et al. [4] compared fine-tuned models 

like VGG and ResNet, reporting up to 94% accuracy for 

single-disease classification. Ale et al. [3] similarly bench- 

marked ResNet-50, VGG-16, and MobileNetV2, finding that 

ResNet-50 achieved 9˜4.2% accuracy, while MobileNetV2 of- 

fered faster inference (32 ms) suited for edge devices. How- 

ever, these single-stage classifiers lacked object localization, 

limiting utility on images with multiple leaves or mixed 

backgrounds. Object-detection frameworks addressed this by 

simultane- ously drawing bounding boxes and labeling 

diseases. Roy & Bhaduri [7] demonstrated a YOLO-based 

model that improved detection accuracy by 1˜0% over 

previous CNN pipelines in real-time settings. Shahi et al. [1] 

extended this concept to UAV imagery, showing that high-

resolution aerial data could be processed by CNNs to detect 

wheat and maize diseases—albeit with performance 

degradation under adverse lighting and wind conditions. 

Singla et al. [2] compared clas- sical ML (SVMs, Decision 

Trees) to deep learning, confirming CNNs’ superiority for 

real-time monitoring. More recently, transformer-based 

detectors and the latest YOLOv8 architecture have further 

boosted both accuracy and speed. YOLOv8’s anchor-free 

design, efficient backbone, and multi-scale fusion layers yield 

substantially lower inference latency (2˜2 ms per image) and 

higher mean Average Precision (mAP) compared to YOLOv5 

and earlier YOLO versions. Our methodology adopts 

YOLOv8 to leverage these gains, enabling instant detection of 

multiple diseases in rice, wheat, and maize images captured 

with consumer-grade cameras. 

2. Chatb

ot-Driven Diagnosis and Treatment: While accurate 

detection is critical, providing actionable guidance to farmers 

requires domain-aware advisory systems. Chowdhury et al. 

[5] implemented a rule-based chatbot trained on annotated 

disease symptoms, offering text- and voice-based treatment 

advice. J. et al. [6] combined deep-learning classifi- cation 

with a simple conversational interface, translating model 

outputs into recommended fungicides. However, these early 

chatbots relied on handcrafted rules and limited vocabulary, 

constraining their ability to handle diverse farmer queries. 

Transformer-based Large Language Models (LLMs) have 

revolutionized conversational AI by generating fluent, 

context-sensitive responses. Shoaib et al. [10] reviewed agri- 

cultural chatbots powered by GPT-style architectures, demon- 

strating up to 30% improvement in response relevance over 

RNN-based bots. Too et al. [4] also showed that multilin- gual 

LLMs expanded accessibility for non-English speak- ers. Our 

system integrates Google’s Gemini Flash, an LLM optimized 

for on-device inference, to provide farmers with natural-

language diagnosis, organic and chemical treatment options, 

and preventive strategies tailored to local agronomic practices. 

By coupling real-time detection outputs with an LLM, we 

deliver a seamless end-to-end advisory workflow that existing 

solutions lack.  

3. Geosp

atial Mapping for Resource Access: Even with detection 

and advice, farmers must still procure inputs—pesticides, 

fertilizers, or resistant seeds—from local suppliers. GIS-

enabled mapping has emerged to fill this gap. Ouhami et al. 

[15] leveraged OpenStreetMap’s Overpass API to build a free, 

open-source resource locator, while Wal- damichael et al. [8] 

developed a GPS-enabled pesticide shop finder that updated in 

real time as farmers moved across fields. Saleem et al. [13] 

further integrated IoT sensor feeds into cloud-based GIS 

dashboards, providing dynamic resource recommendations. 

These prior works demonstrate feasibility but remain sepa- 

rate from disease detection pipelines. No existing platform au- 

tomatically transitions from disease identification to advisory 

guidance to local shop mapping. By embedding Overpass API 

calls within our Streamlit application, we enable users to spot 

diseased plants, consult the AI chatbot, and immediately view 

nearby shops offering recommended treatments—closing the 

loop from symptom to solution.  

4. UAV 

vs. Ground-Based Detection: Several studies advocate 

UAV-mounted cameras for large-scale crop monitoring 

[1][13], yet practical is- sues—weather sensitivity, battery 

constraints, regulatory hur- dles—limit widespread adoption. 

Ground-based, handheld or stationary cameras eliminate these 

barriers. Alsharif et al. [6] showed that optimized YOLOv8 

models could run on edge devices with comparable accuracy 

to UAV systems while of- fering more consistent performance 

under variable conditions. Reflecting these insights, our 

approach targets ground-level image capture using 

smartphones or low-cost cameras, ensur- ing accessibility for 

small-holder farmers. In conclusion, existing research has 

advanced individual components—deep-learning detection, 

chatbot advisories, and GIS mapping—but no unified solution 

spans all three. Our proposed system integrates YOLOv8-

based real-time disease detection, LLM-driven interactive 

diagnosis, and Overpass API-powered resource mapping into 

a single platform. This holistic design addresses the practical 

needs of farmers: fast, accurate identification; expert 
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guidance; and immediate access to inputs—representing a 

novel contribution to AI-driven smart agriculture. 

 

 

3. METHODOLOGY 
The proposed system is an integrated, AI-driven solution for 

real-time crop disease detection, diagnosis, and treatment 

support. It utilizes the YOLOv8 deep learning model for 

high-speed and accurate image-based disease identification, a 

Google Gemini Flash-powered chatbot for interactive diagno- 

sis and recommendations, and a geospatial mapping module 

using OpenStreetMap APIs to locate nearby agricultural re- 

sources. The methodology is structured around four primary 

components: (A) Data Collection and Annotation, (B) 

Disease Detection Using YOLOv8, (C) Chatbot-Based 

Diagnosis and Treatment Guidance, (D) Geospatial Resource 

Mapping, and (E) System Architecture and Deployment.  

A. Data Collection and Annotation: The dataset used for 

model training comprises annotated images of diseased 

leaves from rice, wheat, and maize crops. Images were 

sourced from public agricultural databases and processed 

using Roboflow for annotation. Disease categories include 

fungal infections (e.g., rust, powdery mildew), bacterial 

infections (e.g., blight, streak), and viral infections (e.g., 

maize streak virus). Roboflow was used to label bounding 

boxes around disease regions, generating structured data 

suitable for training YOLOv8. 

B. Disease Detection Using YOLOv8: YOLOv8, a state- of-

the-art object detection model, was employed to identify crop 

diseases in real-time. It operates as a single-stage detector 

and features an efficient architecture composed of three main 

components: 1)

 Backb

one Utilizes CSPNet and C2f modules for enhanced feature 

extraction from input images. 2) Neck 

Aggregates features across scales using a Path Aggre- gation 

Network (PANet) for robust multi-size disease detection. 3)

 Head 

Outputs anchor-free bounding boxes along with classi- 

fication and objectness scores.  

The model optimizes a composite loss function: 

L = λboxLbox + λclsLcls + λobjLobj  (1) 

Where:  

• Lbox is computed using Complete IoU (CIoU),  

•Lcls denotes the classification loss, and 

•Lobj captures the objectness confi- dence. The trained model 

was deployed in a Streamlit-based web interface for real-time 

image upload and disease classification. 

C. Chatbot-Based Diagnosis and Treatment Guidance: 

Following disease detection, a conversational AI chatbot 

pow- ered by Google Gemini Flash provides users with 

detailed information. This includes disease symptoms, 

causes, treat- ment options (both organic and chemical), and 

preventive agricultural practices. Users can ask follow-up 

queries, and the chatbot delivers contextual, region-aware 

advice. Gemini Flash was chosen for its low-latency response 

and lightweight footprint, enabling real-time use in resource-

limited settings. D. Geospatial Resource Mapping: To 

support post- detection action, the system incorporates a 

location-based mapping module. The user inputs their region, 

which is geocoded using OpenStreetMap’s Nominatim API 

to obtain latitude and longitude coordinates. The Overpass 

API is then queried to find: • Plant 

nurseries and garden centers •

 Pestici

de and agricultural supply stores The results are visualized 

using the Folium library in an interactive map format, with 

corresponding shop names and details listed below for 

reference.  

E. System Integration and Deployment : The entire 

pipeline is deployed using a modular and lightweight 

architecture: Frontend: Streamlit web interface (accessible on 

mobile and desktop) Back- end: a. YOLOv8 inference using 

PyTorch, b. Gemini Flash API integration, c. Overpass API 

for map queries Deployment Modes:a. Local: Standalone 

execution on personal devices (no internet needed for 

detection), b. Cloud: Optional cloud hosting for chatbot and 

maps, enhancing scalability Security & Privacy: a. No image 

data is stored post-inference, b. Only bounding box and label 

data are retained during sessions, c. Mapping data is sourced 

from open APIs with no user tracking 

 

3. RESULTS AND DISCUSSIONS 
This section elaborates on the practical evaluation of the AI- 

powered crop disease detection and advisory system. The 

sys- tem comprises three tightly integrated modules: a 

YOLOv8- based deep learning detection engine, an 

intelligent chatbot powered by Google Gemini Flash for 

diagnosis and treatment support, and a geospatial mapping 

interface utilizing Open- StreetMap APIs for locating nearby 

agricultural resources. Performance was assessed through 

quantitative benchmarks, qualitative observations, and user-

centered interaction evalua- tions. The discussion also 

includes real-time system feedback, visual output examples, 

and insights into strengths, limitations, and opportunities for 

enhancement.  

1)Quantitative Evaluation: 

      a)Detection Performance: The YOLOv8-based object 

detection model demonstrated highly effective performance 

in detecting crop diseases across three major cereal crops: 

rice, wheat, and maize. The detection engine consistently 

provided accurate predictions across test datasets, which in- 

cluded various leaf conditions, lighting scenarios, and symp- 

tom severities. The model’s strong generalization is attributed 

to extensive data augmentation during training (e.g., 

brightness adjustments, rotations, horizontal flips) and the use 

of a well- annotated dataset prepared through Roboflow. 

Notably, the model exhibited robustness even when exposed 

to leaves with minor or partially visible symptoms, which are 

typically harder to classify. This was a critical success factor, 

as real-world conditions in agriculture often involve such 

imperfect image inputs. Additionally, the anchor-free design 

of YOLOv8 minimized bounding box errors, improving 

overall localization accuracy.  

b) Inference Efficiency: Real-time performance was a critical 

design goal. The system achieved efficient inference speeds 

by leveraging pretrained YOLOv8 weights and deploy- ing 

the model through a Streamlit-based interface. The use of a 

lightweight yet powerful architecture enabled seamless 

disease identification on standard devices without the need 

for GPU support. Each detection instance—from image 

upload to bounding box prediction—was processed with 

minimal latency, making the tool practical for use in real-

world farming environments. 
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Fig. 1. Confusion Matrix for Rice Disease Detection 

 

 

 

 

Fig. 2. Confusion Matrix for Wheat Disease Detection 

 

 
c) Confusion Matrix Insights: Confusion matrices for each 

crop type showed high class-wise prediction accuracy with 

minimal misclassification. These matrices served as di- 

agnostic tools to evaluate the model’s discriminative 

capability, particularly in distinguishing between visually 

similar diseases like rust and smut in wheat. These 

visualizations highlight that the YOLOv8 model was capable 

of learning nuanced disease characteristics despite the 

complexity of natural agricultural images. 2)

 Qualit

ative Evaluation: a) 1) 

Visual Inspection of Detection Outputs: The system was 

tested with field-captured images, reflecting real environ- 

mental conditions such as inconsistent lighting, occlusion 

from overlapping leaves, and non-uniform backgrounds. 

YOLOv8 effectively highlighted disease-affected regions 

with bounding boxes and corresponding class labels, as 

demonstrated in the following figures: 

 
2)Qualitative Evaluation: 

       a) Visual Inspection of Detection Outputs: The system 

was tested with field-captured images, reflecting real 

environ- mental conditions such as inconsistent lighting, 

occlusion from overlapping leaves, and non-uniform 

backgrounds. YOLOv8 effectively highlighted disease-

affected regions with bounding boxes and corresponding 

class labels, as demonstrated in the following figures: 

 

 

 

 

 

 

 

 
Fig. 3. Confusion Matrix for Maize Disease Detection 

 

 

 
Fig. 4. Rice Blast Detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Wheat Leaf Rust Detection 
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Fig. 6. Maize Northern Leaf Blight Detection 

 

 
These results affirmed the model’s capacity to maintain high 

visual precision across variable test conditions.  

b) Batch-Level Learning Progression: Training and validation 

batch outputs further confirmed the model’s ability to learn 

and generalize. The bounding boxes and confidence scores 

improved progressively with epochs, indicating effec- tive 

optimization of loss functions. The system handled intra- 

class variability well, even for visually ambiguous disease 

symptoms.  

c) Metric-Based Performance Evaluation: Training curves 

such as precision, recall, PR, and F1 scores were analyzed to 

evaluate learning behavior and model convergence. These 

curves revealed steady improvements and conver- gence by 

epoch 10, validating the model’s learning stability. 

 

3)Conversational Chatbot Analysis:  

The Google Gem- ini Flash-powered chatbot formed a crucial 

part of the user interaction layer. It was evaluated based on 

response accuracy, contextual understanding, latency, and 

adaptability to agricul- tural terminology. The chatbot 

returned coherent and comprehensive responses to both 

general queries (e.g., ”What is maize streak virus?”) and 

specific follow-ups (e.g., ”Is neem oil effective for this?”). 

The conversation design ensured a smooth flow, with 

responses structured under categories such as symptoms, 

causes, treat- ments, and preventive steps. This interface 

reduced the reliance on agricultural experts, allowing users to 

make informed decisions autonomously. 

 

 

 

 

 

 

 

 
Fig. 7. Sample Training Batch (Rice) 

 

 
Fig. 7. Sample Training Batch (Rice) 

 

Fig. 8. Sample Validation Batch (Rice) 

 

 
 
Fig. 9. Precision Curve (P Curve) 

 

 

 
Fig. 10. Recall Curve (R Curve) 

 

 

Fig. 11. PR Curve (Precision-Recall Curve) 
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Fig. 12. F1 Curve 

 

 
 
Fig. 13. Chatbot UI with example query on rice blast 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14. Map Output: Bengaluru 

 

 
4) Geospatial Mapping Evaluation:  

To address the treat- ment gap post-diagnosis, a geospatial 

module was integrated. Users could input their location, and 

the system returned nearby pesticide shops and nurseries 

using OpenStreetMap’s Nominatim and Overpass APIs. The 

map interface was tested across multiple locations and 

consistently provided accurate geolocation and shop informa- 

tion, proving essential for practical actionability after disease 

detection. 

 5)Discussion:  

a)Strengths: 

 •High Precision: The YOLOv8 model consistently achieved 

good detection results under diverse scenarios.  

•Real-Time Diagnosis: The application’s lightweight ar- 

chitecture ensures fast image processing.  

•Chatbot Support: The AI assistant offers structured and user-

friendly recommendations. 

 •Integrated Shop Locator: The map feature bridges detection 

and resource accessibility.  

•Farmer-Friendly UI: The Streamlit-based interface is 

intuitive and device agnostic.  

b)Limitations: 

 •Early Disease Symptoms: The system finds it challeng- ing 

to identify diseases in the initial stages. 

 •Dialect-Specific Chatbot Gaps: More training is needed for 

regional language support.  

•OpenStreetMap Gaps: Shop data availability depends on the 

richness of mapped locations.  

c)Future Opportunities:  

•Expand dataset for broader crop and symptom coverage. 

 •Implement mobile app with offline functionality.  

•Integrate pesticide inventory APIs for dynamic recom- 

mendations.  

•Enable chatbot support for multilingual regional queries. 

 
6) Summary: 

 The results affirm that the system provides an end-to-end, 

scalable solution for precision agriculture. 

By combining detection, diagnosis, and geolocation into one 

seamless application, the platform demonstrates how deep 

learning and conversational AI can empower farmers, reduce 

crop loss, and promote sustainable agricultural practices. This 

work lays the foundation for national-level deployments and 

further innovation in digital agri-advisory systems. 
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