
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22812 | Page 1

ZIGUZAGU

Squiggly Sudoku

M.Sandeep M.Sanjana A.Sanjana B.Sanjana

2111CS020475 2111CS020476 2111CS020477 2111CS020478

School of Engineering School of Engineering School of Engineering School of Engineering
MallaReddy University MallaReddy University MallaReddy University MallaReddy University

P.Sanjana U.Sanjana Guide: Dr G Hariharan

2111CS020479 2111CS020480 Associate Professor, Department of AIML
School of Engineering School of Engineering School of Engineering
MallaReddy University MallaReddy University MallaReddy University

Abstract : Abstract In moment's world of excited

life people tend to use more phones and lose the

capability of introductory logical logic and don't do

important brain related exercise due to which our

design Sudoku Game is veritably important as it helps

in logical logic and brain development. currently

Sudoku mystifications are getting decreasingly

popular among people each around the world. The

Sudoku game is now veritably notorious again and

thus numerous inventors have tried to induce indeed

more complicated and more intriguing

mystifications. Hence the purpose of this design is to

produce a Sudoku game that would help the stoner to

break their mystification in certain time and also

would give hints if the stoner could not crack it. In

this report, we present the detailed development and

perpetration of a simple Sudoku game. The Sudoku

game consists of a graphical stoner interface, and a

mystification solver; enforced using python. The

solver finds the result to the mystifications entered by

the stoner. This design gives an sapience into the

different aspects of python programming.

I.INTRODUCTION

To complete this mystification requires the conundrum to

fill every empty cell with an integer between 1 and 9 in

such a way that every number from 1 over to 9 appears

formerly in every row, every column and every one of the

small 3 by 3 boxes stressed with thick borders. Sudoku

mystifications vary extensively in difficulty. Determining

the hardness of Sudoku mystifications is a gruelling

exploration problem for computational scientists. Harder

mystifications generally have smaller specified symbols.

still, the number of specified cells isn't alone responsible

for the difficulty of a mystification and it isn't well understood

what makes a particular Sudoku mystification hard, either for

a mortal or for an algorithm to break. By Sudoku

mystification of box size n, in this paper, is

meant a partial assignment of values from {1,., n 2} to the

cells of an n 2 × n 2 grid in such a way that at most one of

each symbols occurs in any row, column or box. A result of a

Sudoku mystification is a complete assignment to the cells,

satisfying the same conditions on row, columns and boxes,

which extends the original partial assignment.

Withsudoku.py, the process of structure models of Sudoku

mystifications, which can also be answered using algorithms

for calculating results of the models, is a simple matter. In

order to understand how to make the models, first it's

necessary to explain the two different representations of

Sudoku mystificationsinsudoku.py. The dictionary

representation of a mystification is a mapping between cell

markers and cell values. Cell values are integers in the range {

1,., n 2} and cell markers are integers in the range{ 1,., n 4}.

The labelling of a Sudoku mystification of boxsize n starts

with 1 in the top- left corner and moves along rows,

continuing to the coming row when a row is finished. So, the

cell in row i and column j is labelled (i −1) n 2j. For

illustration, the mystification from the preface can be

represented by the wordbook .

> d = { 1 2, 2 5, 5 3, 7 9, 9 1, 50 1, 15 4, 19 4, 21 7, 25 2,. 27

8, 30 5, 31 2, 41 9, 42 8,. 43 1, 47 4, 51 3, 58 3, 59 6,. 62 7,

63 2, 65 7, 72 3, 73 9,. 75 3, 79 6, 81 4}

A Sudoku mystification object can be erected from such a

wordbook. Note that the box size is a parameter of the

mystification object constructor.

 > for i in range(quantum)

> y = random.randint(0, len(grid)- 1)

>>> x = random.randint(0, len(grid)- 1)

>>> num = random.randint(1, len(grid))

>>> allow = 0

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22812 | Page 2

> for e in range(len(grid))

> if num not in grid(x) and num! = grid(e)(y)

> allow = 1

> grid(x)(y) = num

Authorized certified use limited to Kunming Univ of

Science and Tech. Downloaded on September 02,2021 at

230149 UTC from IEEE Xplore. Restrictions apply.

> tempo = grid

 > tempo = rearrange(tempo)

> for e in range(len(grid))

 > if(duplicate_checker(tempo(e)))

> allow = 0

> if allow! = len(grid)

> grid(x)(y) = 0 2 5.. 3. 9. 1 1... 4... 4 7... 2. 8.. 5

2......... 9 8 1... 4... 3...... 3 6.. 7 2. 7..... 3 9. 3... 6. 4

 Random mystifications can be created insudoku.py by

the function.

> import arbitrary

> q = scramble()

> q 5... 1 5...... 7 1 9. 7... 5... 7.. 6.... 9. 5... 5..... 4..

1........

The first argument to srumble() is the number of

specified cells in the mystification. working of

mystifications insudoku.py is handled by the break

function. This function can use a variety of different

algorithms, specified by an voluntary model keyword

argument, to break the mystification. Possible values are

CP for constraint propagation, lp for direct programming,

graph to use a knot coloring algorithm on a graph

mystification model and groebner to break a polynomial

system model via a Groebner base algorithm. The

dereliction geste is to use constraint propagation. > from

sudoku import break.

 > s = break(q)

 > s

7 3 2 8 5 6 9 4 1

8 5 9 4 2 1 6 3 7

6 4 1 9 3 7 8 5 2

9 7 8 5 4 3 1 2 6

3 2 5 6 1 9 7 8 4

4 1 6 7 8 2 5 9 3

2 9 4 1 6 5 3 7 8

5 6 3 2 7 8 4 1 9

1 8 7 3 9 4 2 6 5

 II. LITERATUREREVIEW

D.H. Lehmer was the first to introduce the

countermanding algorithm in 1950. The countermanding

algorithm is one of the problem- working styles

included in a strategy grounded on searching the result

space, but it doesn't have to examine all possibilities,

only those that lead to only results will be reused.

Algorithms countermanding is also an algorithm that

workshop recursively, where the hunt process is grounded

on the Depth-First Hunt(DFS) algorithm, which is to search

for methodical results to all possible results and search for

answers is done by tracing a tree- shaped structure embedded

(2). thus this algorithm is relatively important and veritably

good to be applied in problem- working and to give artificial

intelligence in the game. Several types of digital games that

are generally generally known by the public, similar as Chess,

Math Maze, Tic Tac Toe, to Sudoku can be set up a result

by enforcing the countermanding algorithm. The

countermanding algorithm is an enhancement of the brute

force algorithm, which is to find results to problems among

all possible results totally. Backtracking is a typical form of

recursive algorithm and is grounded on DFS(Depth-First

Hunt) in chancing the right answer. In another sense, the

countermanding algorithm works like experimenting with

several possibilities that lead to the result until it finds the

most applicable bone.

 So there's no need to check all possible results, but it's

enough that only leads to the result, videlicet by sorting

pruning the bumps that don't lead to the result. therefore the

hunt time can be saved. The difference with the brute force

algorithm is the introductory conception, videlicet, in

countermanding, all results are made in the form of a result

tree(tree), and also the tree will be traced in DFS(Depth-

First Hunt) to find the best- asked result.

Affiliated workshop

• The former studies related to exploration conducted

by the author include Llyod(2019) Conduct

exploration published by IEEE in transnational

journals entitled “ working Sudoku with Ant Colony

Optimization. ” Says that sudoku game is a notorious

mystification game that's veritably computationally

grueling , so it requires the most important and most

sophisticated form of algorithm to break it.(2)

• Ghosh(2017) International journals published by

IEEE did the exploration entitled “ A

SimpleRecursive Backtracking Algorithm for

Knight’s tenures Puzzle on Standard 8 × 8

Chessboard ” says the countermanding algorithm isn't

entirely the stylish result in the case of a knight’s

stint game because it executes too long, making it

less effective and practical.(3)

• Schottlender(2014) Conduct exploration published

by IEEE in transnational journals entitled “ The

Effect of Guess Choices on the effectiveness of a

Backtracking Algorithm in a Sudoku Solver. ” Using

the original element of a aimlessly generated sudoku

mystification is better in the countermanding

algorithm compared to using figures that are

formerly available as starting rudiments.(4)

• Szabó(2014) on International journals published by

IEEE did the exploration entitled “ Creation of the

Chips Placement Game with Backtracking Method in

Borland Pascal ” the operation of countermanding

algorithm in the creation of the chips placement game

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22812 | Page 3

is veritably effective because the algorithm can

calculate all combinations with a terse law

Fermuller(2014) International journals published

by IEEE did the exploration entitled “ Semantic

Games with Backtracking for Fuzzy sense. ”

• apply the countermanding algorithm in

Hintikka’s classical game. Li etal.,(2011)

International journals published by IEEE did the

exploration entitled “ The Research on Departure

Flight Sequencing Grounded on Improved

Backtracking Algorithm. ” The operation of the

countermanding algorithm in scheduling has

worked optimally and produced a way that will

be and as anticipated.

 III. PROBLEM STATEMENT

 This section provides a clear and terse
statement of the problem, this should include a description
of the data used in the design and the exploration
questions and suppositions that guided the design. This
problem statement should easily identify the problem that
the exploration paper is trying to break and how it'll be
addressed in the design. A sudoku problem is a problem
where there are is an deficient 9x9 table of figures which
must be filled according to several rules Within any of the
9 individual 3x3 boxes, each of the figures 1 to 9 must be
set up. Within any column of the 9x9 grid, each of the
figures 1 to 9 must be set up. The ideal is to fill a 9 × 9
grid so that each column, each row, and each of the nine 3
× 3 boxes(also called blocks or regions) contains the
integers from 1 to 9, only one time each(that is, simply).
The mystification setter provides a incompletely
completed grid.

 IV. METHODOLOGY

 enforcing working algorithms In order for there to be
no difference other than the algorithms themselves, all
algorithms were written in the same programming
language(python) and all testing was done on the same
device. To get as analogous conditions as possible, all
algorithms were written as, which also had all the test
cases defined. The test cases, after being constructed,
were also transferred to each of the working algorithms
in turn.
 > def solver()
 > global grid, done
>>> if(done == False)
 > for y in range(9)
> for x in range(9)
 > if grid(y)(x) == 0
 > for num in range(1,10) still, x, y)
 >>> if stay(num.
>>> grid(y)(x) = num
> solver()
> grid(y)(x) = 0
> return > done = True
 > for a inentry_list

> for b in a
>b.delete(first = 0, last = 100)
>>>display_val()
> return
The break system uses countermanding algorithm. To insure
as little bias as possible, test cases were also divided into
categories depending on difficulty, and also these categories
were answered both collectively and together. enforcing test
cases In order to insure the quality of the test cases be
sufficient, the sudoku mystifications used are taken from the
book “ A to Z of sudoku ” by Narendra Jussien. The book
divides mystifications into six orders grounded on difficulty
but then we took only three orders. These orders can be set
up in the result section, named “ Easy ”, “ Medium ” and “
Hard ”.

Creating Sudoku mystification
 > def scramble()
 > global grid
 > clear()
 > for a inentry_list
 > for b in a
>b.delete(first = 0, last = 100)
>>> quantum = 20
> for i in range(quantum)
> y = random.randint(0, len(grid)- 1)
>>> x = random.randint(0, len(grid)- 1)
>>> num = random.randint(1, len(grid))
>>> allow = 0
> for e in range(len(grid))
> if num not in grid(x) and num! = grid(e)(y)
> allow = 1
> grid(x)(y) = num
> tempo = grid
> tempo = rearrange(tempo)
 > for e in range(len(grid))
 > if(duplicate_checker(tempo(e)))
 > allow = 0
> if allow! = len(grid)
> grid(x)(y) = 0
>display_val()
For different position we change the quantum which is
mentioned in the below algorithm.
These situations of difficulty are grounded on the number of

different sudoku working ways necessary to break them.

The veritably easy mystifications only need one or two of the

most introductory working ways, whereas the Hard

mystifications bear every available solving system. Ten

mystifications from each order were used as test cases, and to

make the figures easier to observe, each test case was run

times, totalling one million answered mystifications per

position of difficulty.

Comparing the results :

The results of the tests were compared primarily on how

snappily the algorithms answered all the test cases. They were

also reviewed to ascertain whether any mystifications were

unattainable for any of the algorithms. With the

countermanding algorithm, the alternate factor was spare as it

tries every possiblesolution.However, it means that it was

either inaptly enforced, or the test cases themselves were

unattainable, If this algorithm returns unsolved test cases. The

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22812 | Page 4

results were also given in seven different performances.

First all of the test cases together, also the results for the

testing the different situations of difficulty for the

unsolved mystifications. These results were reviewed

collectively as well as grouped together, to see if there

was any difference between the different results.

 V. EXPERIMENTAL RESULTS

 We introduced therandom_puzzle function in the
preface. The system by which this function produces a
arbitrary mystification is fairly simple. A completed
Sudoku mystification is first generated by working the
empty mystification via constraint propagation and also
from this completed mystification the applicable number
of suggestions is removed. An intriguing problem is to
probe the geste of different models on arbitrary
mystifications. A simple script, available in the
examinations brochure of the source law, has been
written to time thesolution of models of arbitrary
mystifications and compass the timings via matplotlib.

Two plots produced by this script punctuate the different
geste of the constraint model and the integer programming
model. The first plot has time on the perpendicular axis
and the number of suggestions on the vertical axis. From
this plot it seems that the constraint propogation algorithm
finds mystifications with numerous or many suggestions
easy. The delicate problems for the constraint solver
appear to be clustered in the range of 20 to 35
suggestions. A different picture emerges with the direct
programming model. With the same set of aimlessly
generated mystifications it appears that the further
suggestions the briskly the solver finds a result

 VI. SYSTEM TESTING

System testing is done by running the Sudoku program using the

Android platform. Several functions can be run on the system,

including generating puzzles, checking the puzzle, and running the

backtracking algorithm. Implementation of the operation carried

out at Smartphone android with the following specifications:

• CPU Quad-core 1.2 GHz Cortex-A7

• Memory RAM 2048 MB

Figure 1: The Sudoku generated is of Easy level

Figure 2: The Sudoku generated is of Medium level

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22812 | Page 5

 Figure 3: The Sudoku generated is of Hard level

Figure 4,5 and 6: Backtracking Algorithm and Solve Puzzle

With Manually

 VII. CONCLUSION

When comparing sudoku working algorithms written in Java,

the countermanding algorithm has been proven to be superior to

both the constraint algorithm as well as the rule grounded

algorithm. The constraint result was comparably hamstrung to

such a degree that it should noway be considered other than for

studying constraint programming in Java. The rule grounded

algorithm was slower than countermanding indeed when only

counting the inauguration and memory allocation, and as

similar can noway be bettered to be faster than the

backtracking result by adding further rules. This of course

assuming the program is written in Java. It’s possible there are

ways to ameliorate the memory operation to such an extent it

can outperform the countermanding algorithm, but we consider

it doubtful. Since the countermanding algorithm is so effective

as well as easy to apply, we consider chancing such a result

gratuitous. The conclusion we've reached is that the

countermanding algorithm is the stylish system for

computationally working sudoku with the Java programming

language.

VIII. REFERENCES

[1] [Bar08]] A. Bartlett, T. Chartier, A. Langville,

T. Rankin. An Integer Programming Model for

the Sudoku Problem, J. Online Math. & Its

Appl., 8(May 2008), May 2008

[2] [Bre79] Brelaz, D., New methods to color the

vertices of a graph, Communications of the

Assoc. of Comput. Machinery 22 (1979), 251-

256.

[3] [Fel06] B. Felgenhauer, F. Jarvis. Enumerating

possible Sudoku grids Online resource 2006

http://www.afjarvis.staff.shef.ac.uk/sudoku/

[4] [Kul10] O. Kullmann, Green-Tao numbers and

SAT in LNCS (Springer), "Theory and

Applications of Satisfiability Testing - SAT

2010", editors O.
Strichman and S. Szeider

[5] [Lew05] R. Lewis. Metaheuristics can solve

Sudoku puzzles, Journal of Heuristics (2007) 13:

387-401

[6] [Lyn06] Lynce, I. and Ouaknine. Sudoku as a SAT

problem, Proceedings of the 9th Symposium on

Artificial Intelligence and Mathematics, 2006.

[7] [Sim05] H. Simonis. Sudoku as a Constraint

Problem, Proceedings of the 4th International

Workshop on Modelling and Reformuulating

Constraint Satisfaction Problems. pp.13-27 (2005)

[8] [Var05] J. Gago-Vargas, I. Hartillo-Hermosa, J.

Martin-Morales, J. M. UchaEnriquez, Sudokus and

Groebner Bases: not only a Divertimento, In: Lecture

Notes in Computer Science, vol. 4194. pp. 155-165.

200

http://www.ijsrem.com/
http://www.afjarvis.staff.shef.ac.uk/sudoku/

