A REVIEW: Combustion Detection System
1Sakshi Godse, 2Mangesh Waghmare, 3Sakshi Nikam, 4Datta Kalal,5Pankaj Papade
1Prof.Supriya Kambale
1Department of Computer Engineering
Genba Sopan Rao Moze College of Engineering Balewadi,Pune-411045,Maharashtra,India
________________________________________________________________________________________________________
Abstract: Convolutional neural networks (CNNs) have yielded state-of-the-art performance in image classification and other computer vision tasks. Their application in fire detection systems will substantially improve detection accuracy, which will eventually minimize fire disasters and reduce the ecological and social ramifications. However, the major concern with CNN-based fire detection systems is their implementation in real-world surveillance networks, due to their high memory and computational requirements for inference. In this paper, we propose an original, energy-friendly, and computationally efficient CNN architecture, inspired by the SqueezeNet architecture for fire detection, localization, and semantic understanding of the scene of the fire. It uses smaller convolutional kernels and contains no dense, fully connected layers, which helps keep the computational requirements to a minimum. Despite its low computational needs, the experimental results demonstrate that our proposed solution achieves accuracies that are comparable to other, more complex models, mainly due to its increased depth. Moreover, this paper shows how a tradeoff can be reached between fire detection accuracy and efficiency, by considering the specific characteristics of the problem of interest and the variety of fire data.
Fire is the main reason due to which environment is suffering through this much loss of forests, animals and many more. To solve this problem, we need to create a strong system for elaboration. In contemporary society, the prevalence of fires poses a significant threat to safety and infrastructure. To address this challenge, we propose the development of a Machine Learning-based Combustion Detecting System tailored for industrial environments
Index Terms - Fire detection, CNN, Image Classification, Data Collection, Data Preprocessing, Model Training, Image Processing