An Educational Chatbot Using AI in Radiotherapy
Authors:
Kartik Kumar , Khushi Sharma , Anand Sharma
Guide Prof. Badal Bhushan
Assistant Professor, Department of CSE
Department Of Computer Science and Engineering
IIMT College Of Engineering
Chapter : 1
Abstract:
Context: The surge in demand for information in cancer centers and hospitals, particularly during the pandemic, overwhelmed the limited manpower available. To address this challenge, there arose a need to develop an educational chatbot tailored for diverse user groups in the field of radiotherapy, including patients and their families, the general public, and radiation staff. Objective: In response to the pressing clinical demands, the primary aim of this endeavor is to delve into the intricacies of designing an educational chatbot for radiotherapy using artificial intelligence.Methods: The chatbot is meticulously crafted using a dialogue tree and layered structure, seamlessly integrated with artificial intelligence functionalities, notably natural language processing (NLP). This adaptable chatbot can be deployed across various platforms, such as IBM Watson Assistant, and embedded in websites or diverse social media channels.Results: Employing a question-and-answer methodology, the chatbot adeptly engages users seeking information on radiotherapy, presenting an approachable and reassuring interface. Recognizing that users, often anxious, may struggle to articulate precise questions, the chatbot facilitates the interaction by offering a curated list of questions. The NLP system augments the chatbot's ability to discern user intent, ensuring the provision of accurate and targeted responses. Notably, the study reveals that functional features, including mathematical operations, are preferred in educational chatbots, necessitating routine updates to furnish fresh content and features.Conclusions: The study culminates in the affirmation that leveraging artificial intelligence facilitates the creation of an educational chatbot capable of disseminating information to users with diverse backgrounds in radiotherapy. Furthermore, the importance of rigorous testing and evaluation, informed by user feedback, is emphasized to iteratively enhance and refine the chatbot's performance.
Keywords: AI, machine learning, NLP, chatbot, radiotherapy, IoT, healthcare.